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ABSTRACT 
We present a metamodel for runtime architecture and demonstrate 
with experimental results how this metamodel can be used to 
recover, analyze and improve runtime architecture of mobile 
phone software. 

Categories and Subject Descriptors 
D.2.11 [Software Architectures]: Domain-specific architectures. 
D.4.1 [Process Management]: Scheduling. 

General Terms 
Measurement, Performance. 

Keywords 
Software architecture, performance, architecture recovery 

1. INTRODUCTION 
Last year our research group was requested to study the runtime 
architecture of mobile phone software to understand whether 
some performance aspects of a phone could be improved. The 
size of mobile phone software is such that a study of detailed 
design would require significantly more time than could have 
been reasonably allocated for this project. Therefore we focused 
on the most essential design decisions that affect runtime 
operation of mobile phone software or, in other words, runtime 
software architecture.  
In this paper we give an overall account of this experience, which 
demonstrates that understanding runtime software architecture in 
terms of featuresets, concurrent tasks and resource scheduling 
framework makes it possible to recover essential architectural 
decisions from execution traces and analyze the effect of 
architectural decisions on software schedulability and 
performance. 
In the next section, we give a description of the application 
domain to motivate our selection of specific performance metrics 
and emphasize the special importance of runtime software 
architecture in this domain. We then explain our understanding of 
what constitutes runtime software architecture and define the 
metamodel we have used in this study. We follow with a 
description of experiments and architecture recovery techniques 

we used. Finally we analyze the findings and discuss how the 
recovered information about architecture can be used to recognize 
patterns for improvement. 

2. UNDERSTANDING APPLICATION 
DOMAIN 
Today personal communication devices are more than voice call 
terminals. Mobile phones serve as platforms for a variety of 
mobile applications including text and picture messaging, 
personal information management, including data synchronization 
with remote servers and desktop computers. Phones host a range 
of communication-centered applications most of which have real-
time constraints. During a voice call speech data should be 
processed in a timely fashion to avoid jitter. During a GPRS 
session lower layer packets arrive every 10 ms. GSM level 3 
signaling standard requires 500 ms response to any GSM Layer 3 
message. GSM level 2 performance requirements require response 
to commands within 50ms. GSM-WCDMA handover has 40 ms 
absolute constraint for completion. These are just few examples of 
system requirements that lead to tight software performance 
constraints. 
Although it is possible to discuss performance metrics for 
separate applications, it is less interesting in practice. This is 
because in most practical cases even the initial implementation of 
each application performs fine in separation. We could discuss 
performance of individual applications in terms of hardware 
utilization figures. Unfortunately utilization figures cannot be 
easily composed due to possible resource conflicts and timeliness 
constraints between applications. Therefore such metrics have 
only limited usefulness when we want to understand system 
performance. 
Many mobile phone applications may execute concurrently but 
not all. In fact, it is impossible to execute all applications 
concurrently due to conflict and contention over the use of 
specific hardware resources on one hand and timeliness and other 
quality constraints of the applications on the other. It is then 
essential to identify the sets of applications that are concurrently 
useful and investigate whether it is possible to execute these sets 
concurrently on a given hardware. More powerful hardware 
components cost more and consume more power shortening 
battery life—a very important metric of mobile phone 
performance. Thus the most appropriate performance metric for 
mobile phone software can be expressed as the ratio between 
concurrently available functionality over the cost of required 
hardware resources. 

3. RUNTIME SOFTWARE 
ARCHITECTURE 
In this section, we use a general definition of software 
architecture and our domain analysis to derive a metamodel for 
runtime software architecture. 
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It is quite commonly understood today that in practice software 
architecture is a collection of the most essential design 
decisions [1]. In [4] we defined software architecture as a set of 
concepts and design decisions about structure and texture of 
software that enable effective satisfaction of architecturally 
significant requirements.  
This definition characterizes architectural decisions in three 
important ways: 

• Decisions about structure. What are the parts, how they are 
related, how they interact and depend on each other? This is 
the most commonly recognized set of decisions and it is 
reflected in most common approaches to software 
architecture 

• Decisions about texture. Texture is the recurring 
microstructure of a system. Crosscutting concerns that 
cannot be localized in a single component must be addressed 
across multiple components repeatedly. In a well-designed 
system this must be done in a uniform fashion, which creates 
recurring microstructure—the definite texture of a system. 
Examples of crosscutting concerns include exception 
handling, execution tracing, overload control, flow control, 
resource reservation policies to mention a few. 

• Architectural decisions are made to enable satisfaction of 
requirements. Runtime architecture has to address runtime 
requirements. 

As we explained earlier, in our domain, improved software 
performance provides more functionality or features concurrently 
available to users. Concurrent availability of software features is 
determined by what is schedulable on a given hardware. Thus we 
need to identify decisions about runtime structure and texture that 
affect schedulability. Structure is created through partition of 
software into units (elements, components) that stand in a specific 
relation to each other. The most common units or elements of 
partition that play an important role at run time are: 

• Units of execution. Executable or loadable components are 
often also units of download and upgrade. These are 
application executables, dynamically loadable libraries, 
agents, and dynamically loadable classes. 

• Units of protection. These are processes in systems that 
support virtual address spaces. 

• Units of concurrency with respect to resource allocation. 
These are tasks and threads. 

Schedulability is not dependent on the structure of executables 
and processes, but is affected by the structure of threads or tasks. 
Thus the structure of runtime software architecture can be 
expressed as a partition into threads and their relationships. 
Relationships between threads are expressed by direct dependence 
in terms of provided and required services and indirect 
dependence through the use of shared resources. 
What are the decisions that determine runtime texture? These are 
decisions that address crosscutting concerns with respect to the 
task structure. These are concerns that cannot be localized to one 
or a small number of tasks whichever task structure we create. 
The concerns that crosscut the task partition and create runtime 
texture are related to intertask communication, and resource 
management policies and mechanisms. These concerns are 
addressed by choices of messaging infrastructure and resource 

scheduling framework. Thus the most common decisions about 
runtime texture are routing, queuing, scheduling and dispatch of 
messages, policies for reservation, release, and pre-emption of 
resources. 
Thus runtime software architecture is a partition of all 
software functions into concurrent units and a scheduling 
policy that together deliver the best possible service to users 
with available resources.  
As we discussed in the previous section many software 
applications running on a mobile phone have real-time 
constraints. Some applications must be executed concurrently and 
thus have to be schedulable together. However, if we tried to 
execute all applications at the same time, the system would not be 
schedulable. Thus an essential concept in the design of runtime 
architecture is a featureset. A featureset is a set of concurrently 
available features. Specification of useful featuresets for a given 
system is an architecturally significant requirement. Runtime 
architecture should enable schedulability of all featuresets. A 
featureset can be defined by a collection of use cases that can 
overlap in time. The scenarios that correspond to these use cases 
require that objects participating in the scenario can be 
concurrently active. A featureset determines which objects must 
be executed concurrently. All objects are allocated to some task. 
The tasks that contain objects from the same featureset have to be 
collectively schedulable. Tasks that do not belong to the same 
featureset do not have to be collectively schedulable. If tasks that 
belong to the same featureset are not schedulable, some 
architectural decisions regarding allocation of objects to tasks or 
resource scheduling policies must be revised. 
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Figure 1. Runtime Architecture Meta Model 

Figure 1 presents our metamodel for runtime architecture in the 
UML notation. Thus the main decisions of software architect 
regarding runtime architecture are 

• Partition into featuresets  

• Identification of resources 

• Partition into tasks 

• Allocation of objects to tasks 

• Resource scheduling framework 
Since these decisions are made to enable the satisfaction of 
performance requirements, we need to be able to analyze the 
runtime architecture in terms of its performance characteristics. 
This imposes some further constraints on tasks based on the 
properties of selected resource-scheduling framework. The next 



section will discuss the task model expected by most commonly 
used scheduling frameworks. 

4. SCHEDULING FRAMEWORK 
Most industrial real-time systems today still rely on fixed priority 
scheduling. We used in this study the framework of rate 
monotonic analysis and scheduling (RMA) [2][3]. In its simplest 
form, RMA requires tasks to be periodic, independent, to have a 
deadline equal to period, and to have a constant response time in 
each period. RMA assigns priorities to tasks in reverse of their 
period (according to their rate). If a system satisfying RMA 
constraints is not schedulable using RMA, it is not schedulable 
using any other scheduling discipline. This fact by itself could be 
a sufficient motivation to use RMA as real-time scheduling 
framework. 
To use RMA, we need to have a task model that specifies the task 
period, response time, and deadline or constraints on response 
time. In addition, if tasks have been assigned non-RMS priorities, 
such priorities need to be known too. This is the minimal 
information needed for making effective scheduling decisions. In 
order to apply RMA to our system, we had to identify concurrent 
tasks and for each task to determine its priority, period, response 
time, and deadline or constraint on response time. 
We had full access to the design documentation, source code, and 
extensive execution traces produced from multiple use cases. 
Unfortunately design documentation often does not contain 
sufficient information regarding task structure. This is mainly 
because initial task structure is often changed at later stages of 
product integration and fine-tuning when design documentation is 
not actively maintained anymore. 
Although source code contains task creation instructions and task 
priorities, it is not easy to determine from the source code which 
objects / functions are allocated to which task and how objects in 
a given task interact with objects in other tasks. Therefore we 
mainly focused our efforts on the analysis of execution traces. 

5. RECOVERING RUNTIME 
ARCHITECTURE FROM EXECUTION 
TRACES 
The raw data for architecture recovery consisted of multiple files 
of execution traces collected from different use cases. A trace file 
usually includes traces of different stages of a scenario, like 
connection setup and teardown, buffering of data, etc. To identify 
the segment of the use case that has all the relevant tasks active 
we used utilization maps (Figure 2).  
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after a lower priority task Tlow (Figure 3) does not indicate that the 
lower priority task was preempted. It is possible that the lower 
priority task Tlow had completed its response before Thigh was 
scheduled. To recognize preemption, our system produced an 
event at the end of each task’s response. If such an event occurred 
at time T2, the task Thigh was scheduled after Tlow had completed 
its response. If such an event occurred only at the time T4, then 
the task Thigh preempted Tlow. This decision affects the calculation 
of response time and period of Tlow task. If task Thigh preempted 
Tlow, then Tlow response times [T1, T2] and [T3, T4] on the picture 
should be added to represent a single response time. If no 
preemption occurred, then [T1, T2] is one response time of Tlow, 
[T3, T4]—another, and [T1, T3] is a period of Tlow. 
If a trace at the end of task’s response is not available, task 
preemptions can be recognized by examining the sequence of 
tasks following Tlow. If Tlow is not rescheduled after it was 
preempted by Thigh and before a lower priority task Tlower is 
scheduled then it can be assumed that Tlow has completed its 
response before Thigh was scheduled. It is also possible for a lower 
priority task Tlow to invoke a higher priority task Thigh as a part of 
Tlow‘s response. This situation can be recognized by studying 
message traces. If Tlow sends a message to Thigh before it was 
preempted and later Tlow was rescheduled, we consider the action 
of Thigh to be a part of Tlow response. 
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Figure 3. Task preemption 
The analysis of task preemptions led us to recognize that the 
RMA model of what constitutes a response is limited in a number 
of ways: A response to an event may involve multiple tasks of 
different priority. However, the invocation of these tasks is 
deterministic in response to an event and thus has to be seen as a 
single activity. It is also possible that a response to an event may 
have multiple deadlines for different actions that constitute the 
response. In these cases, the task period cannot be considered the 
main deadline. 
Once we have extracted from the traces the observations of each 
task’s parameters such as invocations and response times, we had 
to decide how to process these data in order to arrive to a fair 
characterization of each task in terms of RMA model. 
Specifically, RMA expects each task to be characterized by a 
single period, deadline and response time possibly representing 
the worst case. In all the use cases we have analyzed such an 
approach is not practical because none of these use cases would 
be schedulable even though we knew that the system performed 
fine in reality. For example, in a simple voice call scenario where 
the average CPU load was lower than 30% and the system is 
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clearly schedulable, the worst-case response time in a single task 
is larger than its worst-case period, which indicates that even this 
single task is not schedulable according to the analysis. Similarly, 
Table 1 shows the extracted data of a communication task for the 
use case of file transfer between a laptop and a server over USB 



and GPRS. The worst-case period of the task takes 0.4 time units, 
while the worst-case response time takes 20 time units.  
After some analysis we concluded that either our tasks are 
aperiodic with a wide distribution of inter invocation and response 
times or what is more probable the initial assumption that we 
adopted from RMA of tasks having a single period and response 
time does not hold in our case. However, it may be possible to 
identify a small set of typical (“peak”) periods and response times 
of a task. 

Table 1. Communication task response times and periods in 
file transfer over GPRS and BT 

Worst case 
(longest) 
response time 

20 Worst case 
(shortest) 
period 

0.4 

Average 
response time 

1.6 Average 
period 

20.5 

Largest cluster 
response time 

1.3 Largest 
cluster 
period 

1.6 

Response time clusters Period clusters 

Time Size Time Size 

1.3 4352 1.6 1479 

3.1 906 4.3 657 

  10.6 562 

  20.6 1024 

  41.9 1221 

  100.9 280 
We developed a data-clustering algorithm that identifies presence 
of multiple clusters (“peaks”) in observations of task periods and 
response times. We have applied a modified K-means algorithm 
with criteria for establishing new clusters. We have then 
developed a technique to merge clusters that did not exhibit 
sufficient separation. We found that indeed most of the tasks had 
several characteristic periods and response times. For example, a 
communication task (Table 1) has 2 response time clusters and 6 
period clusters in the given use case.  
Response time and period clusters need to be analyzed further. In 
many cases, it is impossible to perform a schedulability analysis 
based on just the largest response-time and period clusters. For 
example, the largest period and response-time clusters of the task 
in Table 1 show that this task would have used the processor at 
1.3/1.6 ≈ 81% utilization. Since the system has other tasks as 
well, such a high utilization by one task would indicate that the 
system is unschedulable. However, as we know from practice, this 
is not the case. It may be possible though to identify pairs of 
compatible period and response time values. It is also essential to 
determine which parameter values of one task correspond to 
which parameter values of another task from the same featureset. 

6. CONCLUSIONS 
Understanding runtime software architecture in terms of 
featuresets, concurrent tasks and resource scheduling framework 

seems very useful both in terms of making concrete what are 
essential architectural decisions and how to analyze the effect of 
architectural decisions on software schedulability and 
performance. 
Using execution traces to recover runtime architecture is a 
practical approach in view of the fact that design documents often 
become outdated and runtime information is hard to extract from 
source code. 
Since featuresets do not overlap at runtime, they could be 
incorporated into the runtime architecture. Different schedules 
can be used for different featuresets. This is possible even when 
using a fixed priority operating system by allowing the operating 
system to perform infrequent priority changes of all tasks before 
scheduling the first task when featureset changes. Such an 
approach allows using optimal schedule for each featureset and 
improves overall schedulability of the system. 
Execution traces may uncover inefficiencies in the design of 
runtime architecture. Typical examples are tasks with very short 
and very long periods that can occur in the same featureset. Fixed 
priority scheduling cannot assign a consistent priority to such 
tasks. Functionality needs to be reallocated. Another example is a 
single task that serves multiple independent event streams. Such a 
task will have more than one period from the independent events 
superimposed on each other. As a result such tasks do not have 
any characteristic period and cannot be scheduled using RMA 
framework. Functionality for serving independent streams of 
events must be allocated to different tasks. 
Execution traces demonstrate that event responses may include 
multiple actions spread over multiple tasks. Unless such response 
has to meet multiple deadlines for different actions, the priority of 
tasks that belong to the multi-action response should be non-
decreasing since the priority of activity as a whole is that of its 
lowest priority task and correspondingly the activity as a whole 
can be blocked by tasks with priorities higher than the activity's 
lowest priority. 
Activities that do not share actions with other activities can be 
reallocated so that the entire activity happens in the same task. 
This may not work when actions have independent deadlines and 
thus the tasks that carry the actions may need to be of different 
priority. 
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