
Making Sense of Runtime Architecture for Mobile Phone Software
Alexander Ran, Raimondas Lencevicius

Nokia Research Center
5 Wayside Road, Burlington, MA 01803, USA

Alexander.Ran@nokia.com Raimondas.Lencevicius@nokia.com

ABSTRACT
We present a metamodel for runtime architecture and demonstrate
with experimental results how this metamodel can be used to
recover, analyze and improve runtime architecture of mobile
phone software.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific architectures.
D.4.1 [Process Management]: Scheduling.

General Terms
Measurement, Performance.

Keywords
Software architecture, performance, architecture recovery

1. INTRODUCTION
Last year our research group was requested to study the runtime
architecture of mobile phone software to understand whether
some performance aspects of a phone could be improved. The
size of mobile phone software is such that a study of detailed
design would require significantly more time than could have
been reasonably allocated for this project. Therefore we focused
on the most essential design decisions that affect runtime
operation of mobile phone software or, in other words, runtime
software architecture.
In this paper we give an overall account of this experience, which
demonstrates that understanding runtime software architecture in
terms of featuresets, concurrent tasks and resource scheduling
framework makes it possible to recover essential architectural
decisions from execution traces and analyze the effect of
architectural decisions on software schedulability and
performance.
In the next section, we give a description of the application
domain to motivate our selection of specific performance metrics
and emphasize the special importance of runtime software
architecture in this domain. We then explain our understanding of
what constitutes runtime software architecture and define the
metamodel we have used in this study. We follow with a
description of experiments and architecture recovery techniques

we used. Finally we analyze the findings and discuss how the
recovered information about architecture can be used to recognize
patterns for improvement.

2. UNDERSTANDING APPLICATION
DOMAIN
Today personal communication devices are more than voice call
terminals. Mobile phones serve as platforms for a variety of
mobile applications including text and picture messaging,
personal information management, including data synchronization
with remote servers and desktop computers. Phones host a range
of communication-centered applications most of which have real-
time constraints. During a voice call speech data should be
processed in a timely fashion to avoid jitter. During a GPRS
session lower layer packets arrive every 10 ms. GSM level 3
signaling standard requires 500 ms response to any GSM Layer 3
message. GSM level 2 performance requirements require response
to commands within 50ms. GSM-WCDMA handover has 40 ms
absolute constraint for completion. These are just few examples of
system requirements that lead to tight software performance
constraints.
Although it is possible to discuss performance metrics for
separate applications, it is less interesting in practice. This is
because in most practical cases even the initial implementation of
each application performs fine in separation. We could discuss
performance of individual applications in terms of hardware
utilization figures. Unfortunately utilization figures cannot be
easily composed due to possible resource conflicts and timeliness
constraints between applications. Therefore such metrics have
only limited usefulness when we want to understand system
performance.
Many mobile phone applications may execute concurrently but
not all. In fact, it is impossible to execute all applications
concurrently due to conflict and contention over the use of
specific hardware resources on one hand and timeliness and other
quality constraints of the applications on the other. It is then
essential to identify the sets of applications that are concurrently
useful and investigate whether it is possible to execute these sets
concurrently on a given hardware. More powerful hardware
components cost more and consume more power shortening
battery life—a very important metric of mobile phone
performance. Thus the most appropriate performance metric for
mobile phone software can be expressed as the ratio between
concurrently available functionality over the cost of required
hardware resources.

3. RUNTIME SOFTWARE
ARCHITECTURE
In this section, we use a general definition of software
architecture and our domain analysis to derive a metamodel for
runtime software architecture.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ESEC/FSE’03, September 1–9, 2003, Helsinki, Finland

Copyright 2003 ACM 1-58113-743-5/03/0009…$5.00.

It is quite commonly understood today that in practice software
architecture is a collection of the most essential design
decisions [1]. In [4] we defined software architecture as a set of
concepts and design decisions about structure and texture of
software that enable effective satisfaction of architecturally
significant requirements.
This definition characterizes architectural decisions in three
important ways:

• Decisions about structure. What are the parts, how they are
related, how they interact and depend on each other? This is
the most commonly recognized set of decisions and it is
reflected in most common approaches to software
architecture

• Decisions about texture. Texture is the recurring
microstructure of a system. Crosscutting concerns that
cannot be localized in a single component must be addressed
across multiple components repeatedly. In a well-designed
system this must be done in a uniform fashion, which creates
recurring microstructure—the definite texture of a system.
Examples of crosscutting concerns include exception
handling, execution tracing, overload control, flow control,
resource reservation policies to mention a few.

• Architectural decisions are made to enable satisfaction of
requirements. Runtime architecture has to address runtime
requirements.

As we explained earlier, in our domain, improved software
performance provides more functionality or features concurrently
available to users. Concurrent availability of software features is
determined by what is schedulable on a given hardware. Thus we
need to identify decisions about runtime structure and texture that
affect schedulability. Structure is created through partition of
software into units (elements, components) that stand in a specific
relation to each other. The most common units or elements of
partition that play an important role at run time are:

• Units of execution. Executable or loadable components are
often also units of download and upgrade. These are
application executables, dynamically loadable libraries,
agents, and dynamically loadable classes.

• Units of protection. These are processes in systems that
support virtual address spaces.

• Units of concurrency with respect to resource allocation.
These are tasks and threads.

Schedulability is not dependent on the structure of executables
and processes, but is affected by the structure of threads or tasks.
Thus the structure of runtime software architecture can be
expressed as a partition into threads and their relationships.
Relationships between threads are expressed by direct dependence
in terms of provided and required services and indirect
dependence through the use of shared resources.
What are the decisions that determine runtime texture? These are
decisions that address crosscutting concerns with respect to the
task structure. These are concerns that cannot be localized to one
or a small number of tasks whichever task structure we create.
The concerns that crosscut the task partition and create runtime
texture are related to intertask communication, and resource
management policies and mechanisms. These concerns are
addressed by choices of messaging infrastructure and resource

scheduling framework. Thus the most common decisions about
runtime texture are routing, queuing, scheduling and dispatch of
messages, policies for reservation, release, and pre-emption of
resources.
Thus runtime software architecture is a partition of all
software functions into concurrent units and a scheduling
policy that together deliver the best possible service to users
with available resources.
As we discussed in the previous section many software
applications running on a mobile phone have real-time
constraints. Some applications must be executed concurrently and
thus have to be schedulable together. However, if we tried to
execute all applications at the same time, the system would not be
schedulable. Thus an essential concept in the design of runtime
architecture is a featureset. A featureset is a set of concurrently
available features. Specification of useful featuresets for a given
system is an architecturally significant requirement. Runtime
architecture should enable schedulability of all featuresets. A
featureset can be defined by a collection of use cases that can
overlap in time. The scenarios that correspond to these use cases
require that objects participating in the scenario can be
concurrently active. A featureset determines which objects must
be executed concurrently. All objects are allocated to some task.
The tasks that contain objects from the same featureset have to be
collectively schedulable. Tasks that do not belong to the same
featureset do not have to be collectively schedulable. If tasks that
belong to the same featureset are not schedulable, some
architectural decisions regarding allocation of objects to tasks or
resource scheduling policies must be revised.

Featureset

ResourceScenario

ObjectEvent

concurrent

handled by

use (when held by task)

Scheduler

Task

allocate

determine schedule

hold

Runtime
Architecture

identify

Usecase
supported by

*

* *

*

analyze

*

* *

Figure 1. Runtime Architecture Meta Model

Figure 1 presents our metamodel for runtime architecture in the
UML notation. Thus the main decisions of software architect
regarding runtime architecture are

• Partition into featuresets

• Identification of resources

• Partition into tasks

• Allocation of objects to tasks

• Resource scheduling framework
Since these decisions are made to enable the satisfaction of
performance requirements, we need to be able to analyze the
runtime architecture in terms of its performance characteristics.
This imposes some further constraints on tasks based on the
properties of selected resource-scheduling framework. The next

section will discuss the task model expected by most commonly
used scheduling frameworks.

4. SCHEDULING FRAMEWORK
Most industrial real-time systems today still rely on fixed priority
scheduling. We used in this study the framework of rate
monotonic analysis and scheduling (RMA) [2][3]. In its simplest
form, RMA requires tasks to be periodic, independent, to have a
deadline equal to period, and to have a constant response time in
each period. RMA assigns priorities to tasks in reverse of their
period (according to their rate). If a system satisfying RMA
constraints is not schedulable using RMA, it is not schedulable
using any other scheduling discipline. This fact by itself could be
a sufficient motivation to use RMA as real-time scheduling
framework.
To use RMA, we need to have a task model that specifies the task
period, response time, and deadline or constraints on response
time. In addition, if tasks have been assigned non-RMS priorities,
such priorities need to be known too. This is the minimal
information needed for making effective scheduling decisions. In
order to apply RMA to our system, we had to identify concurrent
tasks and for each task to determine its priority, period, response
time, and deadline or constraint on response time.
We had full access to the design documentation, source code, and
extensive execution traces produced from multiple use cases.
Unfortunately design documentation often does not contain
sufficient information regarding task structure. This is mainly
because initial task structure is often changed at later stages of
product integration and fine-tuning when design documentation is
not actively maintained anymore.
Although source code contains task creation instructions and task
priorities, it is not easy to determine from the source code which
objects / functions are allocated to which task and how objects in
a given task interact with objects in other tasks. Therefore we
mainly focused our efforts on the analysis of execution traces.

5. RECOVERING RUNTIME
ARCHITECTURE FROM EXECUTION
TRACES
The raw data for architecture recovery consisted of multiple files
of execution traces collected from different use cases. A trace file
usually includes traces of different stages of a scenario, like
connection setup and teardown, buffering of data, etc. To identify
the segment of the use case that has all the relevant tasks active
we used utilization maps (Figure 2).

Figure 2 Finding the analys
A trace is produced every tim
account for task preemptions, w
The mere fact that a higher p

after a lower priority task Tlow (Figure 3) does not indicate that the
lower priority task was preempted. It is possible that the lower
priority task Tlow had completed its response before Thigh was
scheduled. To recognize preemption, our system produced an
event at the end of each task’s response. If such an event occurred
at time T2, the task Thigh was scheduled after Tlow had completed
its response. If such an event occurred only at the time T4, then
the task Thigh preempted Tlow. This decision affects the calculation
of response time and period of Tlow task. If task Thigh preempted
Tlow, then Tlow response times [T1, T2] and [T3, T4] on the picture
should be added to represent a single response time. If no
preemption occurred, then [T1, T2] is one response time of Tlow,
[T3, T4]—another, and [T1, T3] is a period of Tlow.
If a trace at the end of task’s response is not available, task
preemptions can be recognized by examining the sequence of
tasks following Tlow. If Tlow is not rescheduled after it was
preempted by Thigh and before a lower priority task Tlower is
scheduled then it can be assumed that Tlow has completed its
response before Thigh was scheduled. It is also possible for a lower
priority task Tlow to invoke a higher priority task Thigh as a part of
Tlow‘s response. This situation can be recognized by studying
message traces. If Tlow sends a message to Thigh before it was
preempted and later Tlow was rescheduled, we consider the action
of Thigh to be a part of Tlow response.

T im e

T lo w T h ig h T lo w

T 1

Is th is ta s k 's T low p re e m p tio n ?

T 2 T 3 T 4

Figure 3. Task preemption
The analysis of task preemptions led us to recognize that the
RMA model of what constitutes a response is limited in a number
of ways: A response to an event may involve multiple tasks of
different priority. However, the invocation of these tasks is
deterministic in response to an event and thus has to be seen as a
single activity. It is also possible that a response to an event may
have multiple deadlines for different actions that constitute the
response. In these cases, the task period cannot be considered the
main deadline.
Once we have extracted from the traces the observations of each
task’s parameters such as invocations and response times, we had
to decide how to process these data in order to arrive to a fair
characterization of each task in terms of RMA model.
Specifically, RMA expects each task to be characterized by a
single period, deadline and response time possibly representing
the worst case. In all the use cases we have analyzed such an
approach is not practical because none of these use cases would
be schedulable even though we knew that the system performed
fine in reality. For example, in a simple voice call scenario where
the average CPU load was lower than 30% and the system is
Analysis segment

is segment from utilization map
e a task is scheduled to run. To
e had to recognize them in traces.

riority task Thigh is executed right

clearly schedulable, the worst-case response time in a single task
is larger than its worst-case period, which indicates that even this
single task is not schedulable according to the analysis. Similarly,
Table 1 shows the extracted data of a communication task for the
use case of file transfer between a laptop and a server over USB

and GPRS. The worst-case period of the task takes 0.4 time units,
while the worst-case response time takes 20 time units.
After some analysis we concluded that either our tasks are
aperiodic with a wide distribution of inter invocation and response
times or what is more probable the initial assumption that we
adopted from RMA of tasks having a single period and response
time does not hold in our case. However, it may be possible to
identify a small set of typical (“peak”) periods and response times
of a task.

Table 1. Communication task response times and periods in
file transfer over GPRS and BT

Worst case
(longest)
response time

20 Worst case
(shortest)
period

0.4

Average
response time

1.6 Average
period

20.5

Largest cluster
response time

1.3 Largest
cluster
period

1.6

Response time clusters Period clusters

Time Size Time Size

1.3 4352 1.6 1479

3.1 906 4.3 657

 10.6 562

 20.6 1024

 41.9 1221

 100.9 280
We developed a data-clustering algorithm that identifies presence
of multiple clusters (“peaks”) in observations of task periods and
response times. We have applied a modified K-means algorithm
with criteria for establishing new clusters. We have then
developed a technique to merge clusters that did not exhibit
sufficient separation. We found that indeed most of the tasks had
several characteristic periods and response times. For example, a
communication task (Table 1) has 2 response time clusters and 6
period clusters in the given use case.
Response time and period clusters need to be analyzed further. In
many cases, it is impossible to perform a schedulability analysis
based on just the largest response-time and period clusters. For
example, the largest period and response-time clusters of the task
in Table 1 show that this task would have used the processor at
1.3/1.6 ≈ 81% utilization. Since the system has other tasks as
well, such a high utilization by one task would indicate that the
system is unschedulable. However, as we know from practice, this
is not the case. It may be possible though to identify pairs of
compatible period and response time values. It is also essential to
determine which parameter values of one task correspond to
which parameter values of another task from the same featureset.

6. CONCLUSIONS
Understanding runtime software architecture in terms of
featuresets, concurrent tasks and resource scheduling framework

seems very useful both in terms of making concrete what are
essential architectural decisions and how to analyze the effect of
architectural decisions on software schedulability and
performance.
Using execution traces to recover runtime architecture is a
practical approach in view of the fact that design documents often
become outdated and runtime information is hard to extract from
source code.
Since featuresets do not overlap at runtime, they could be
incorporated into the runtime architecture. Different schedules
can be used for different featuresets. This is possible even when
using a fixed priority operating system by allowing the operating
system to perform infrequent priority changes of all tasks before
scheduling the first task when featureset changes. Such an
approach allows using optimal schedule for each featureset and
improves overall schedulability of the system.
Execution traces may uncover inefficiencies in the design of
runtime architecture. Typical examples are tasks with very short
and very long periods that can occur in the same featureset. Fixed
priority scheduling cannot assign a consistent priority to such
tasks. Functionality needs to be reallocated. Another example is a
single task that serves multiple independent event streams. Such a
task will have more than one period from the independent events
superimposed on each other. As a result such tasks do not have
any characteristic period and cannot be scheduled using RMA
framework. Functionality for serving independent streams of
events must be allocated to different tasks.
Execution traces demonstrate that event responses may include
multiple actions spread over multiple tasks. Unless such response
has to meet multiple deadlines for different actions, the priority of
tasks that belong to the multi-action response should be non-
decreasing since the priority of activity as a whole is that of its
lowest priority task and correspondingly the activity as a whole
can be blocked by tasks with priorities higher than the activity's
lowest priority.
Activities that do not share actions with other activities can be
reallocated so that the entire activity happens in the same task.
This may not work when actions have independent deadlines and
thus the tasks that carry the actions may need to be of different
priority.

7. REFERENCES
[1] G. Booch, I. Jacobson, J. Rumbaugh, "The Unified Modeling

Language User Guide", Addison-Wesley 1999.
[2] M.H. Klein, T. Ralya, B. Pollak, R. Obenza, M.G. Harbour,

“A Practitioner’s Handbook for Real-Time Analysis: Guide
to Rate Monotonic Analysis for Real-Time Systems”, Kluwer
Academic Publishers, 1993.

[3] J.W.S. Liu, “Real-Time Systems”, Prentice-Hall, 2000.

[4] A. Ran “ARES Conceptual Framework for Software
Architecture” in M. Jazayeri, A. Ran, F. van der Linden
(eds.), “Software Architecture for Product Families
Principles and Practice”, Addison Wesley, 2000.

	INTRODUCTION
	UNDERSTANDING APPLICATION DOMAIN
	RUNTIME SOFTWARE ARCHITECTURE
	SCHEDULING FRAMEWORK
	RECOVERING RUNTIME ARCHITECTURE FROM EXECUTION TRACES
	CONCLUSIONS
	REFERENCES

