
Performance Data Collection: Hybrid Approach

Edu Metz, Raimondas Lencevicius
Nokia Research Center

5 Wayside Road, Burlington, MA 01803, USA
Edu.Metz@nokia.com Raimondas.Lencevicius@nokia.com

1. Introduction

As the complexity of embedded software systems
grows, performance profiling becomes more and more
important. Performance profiling of embedded software
systems requires data collection with low overhead and
high information completeness.

Performance profiling consists of monitoring a
software system during execution and then analyzing the
obtained data. There are two ways to collect profiling
data: either event tracing through code instrumentation or
statistical sampling. Event tracing may be more intrusive
but allows the profiler to record all events of interest.
Statistical sampling may be less intrusive to software
system execution, but cannot provide complete execution
information.

Our position is that data collection on embedded
software systems should be performed using a hybrid
approach that combines the completeness of event tracing
with the low cost of statistical sampling. The following
sections expand this position.

2. Performance Data Collection

Performance profiling determines where a software
system spends its execution time. Performance profiling
requires data collection during program execution. Such
data collection can be done either by event tracing or by
statistical sampling. Let us consider the implications of
using these two methods.

2.1. Event tracing

Event tracing records events that occur during system
execution. Event tracing can track various events, such as
task switches, component entries and exits, function calls,
branches, software execution states, message
communication, input/output, and resource usage.

Tracing requires changes to the software system
usually called instrumentation. Instrumentation can be
inserted into various program representations: source
code, object code, byte code, and executable code. Time

wise, it can be inserted before program execution or
during it. Adding trace instrumentation can be done
manually, semi-automatically or automatically.
Automatization of the instrumentation may be complex.
Full discussion on complexities of automatic vs. manual
instrumentation goes beyond the scope of this paper. It is
sufficient to say that the instrumentation may be a
burden-some task, especially if some manual work is
needed.

Since an occurrence of any event creates a record,
event tracing is characterized by the completeness of
knowledge: if an event was recorded, it did occur; if it
was not recorded, it did not occur. As we will see, this
does not hold for statistical sampling. Performance
engineers can also learn exactly when each event
occurred since every record is time stamped. This allows
a complete analysis of event relationships in time, for
example, the measurement of precise time distance
between any two events. A performance engineer using
an event trace can reconstruct the dynamic behavior of a
software system.

For example, consider energy consumption by a
mobile device [4]. To map the software execution to the
power consumed, a performance engineer needs to know
exactly when a peripheral is started and stopped. The
information from event tracing directly maps software
execution and power consumption (Figure 1 shows the
measured power consumption as a function of time and
peripheral device activations/deactivations mapped onto
the same timeline).

There are a number of difficulties in using event
tracing. Users have to spend time instrumenting the
software system. Event traces affect the performance of
the software system distorting its execution [8].

Not only does event tracing take some time, adding
traces changes the behavior of the software system
because of additional memory accesses and input/output
[6]. In real-time software systems, the instrumentation
overhead can cause real-time constraint violations.
Therefore, it is important to limit the intrusion by
minimizing the instrumentation overhead [5]. One way
to achieve this is by reducing the number of events
traced. However, performance engineers have to choose
carefully, since omitting events from tracing also

reduces the amount of information available. For
example, if only “on” and “off” events are traced in a
peripheral, it is no longer possible to detect and map the
peripheral’s different “on” modes to differences in the
system’s power consumption. In choosing the
instrumentation granularity it is important to address the
trade-off between the amount of event information
required and the performance impact of the trace
instrumentation. This may be hard even for an
experienced performance engineer.

t (s)

I (
A)

Device 1 Device 2 Device 3 Measured
Figure 1. Device activations mapped to power

consumption

For small routines, event tracing may not yield an
accurate time comparison with larger routines. A small
routine may suffer much higher relative overhead than a
larger routine. If this is ignored, a great deal of effort may
be wasted optimizing routines that are not real
performance bottlenecks.

The data volume associated with event tracing can be
very large: more than megabyte per second traced. This
can cause a problem in devices that do not have large and
fast storage or external network interfaces.

2.2. Statistical sampling

Statistical sampling relies on intermittent access to the
software system to record its current state. Sampling can
record various information: program counter (execution
location), function call stack, scheduled or blocked tasks,
active peripherals and so on. Sampling can be done
strictly periodically or with certain randomness.

The simplest forms of sampling do not require any
software modifications. A sampler simply copies the
content of some processor registers to memory. In more
complex sampling, the software system may need to be
interrupted to record the needed information. In both of
these cases, a performance engineer would usually spend
much less time to achieve sampling than to instrument the
software system for tracing.

The overhead of sampling may be orders below the
overhead of tracing. For example, branch tracing may
require overheads of over a factor of 10, function tracing
may require overheads up to a factor of 2, while
sampling at up to thousand samples a second may have
an overhead of less than 1% [1]. (This estimation
assumes a 100Mhz processor and 1000 cycles of work
per sample, which is enough to read the address of the
currently executed instruction and save this information.
Using symbol information generated at compile time, the
profiler can later correlate the recorded sample with the
source code.) At such frequencies, sampling produces
much less data than event tracing—a positive in storage-
limited devices.

With advantages presented above, sampling is a
perfect tool for gathering the performance data in
systems where the low overhead is crucial. For example,
sampling the execution of software in a mobile device
executing real-time tasks may be the only way to obtain
information about long-running functions without
causing the software to miss real-time deadlines due to
tracing overhead.

However, sampling also has downsides. The
sampling frequency determines the granularity of the
gathered information. In addition, the duration for which
the software system executes directly relates to the
number of samples collected. A sampling profiler
requires software systems to execute over a reasonable
period of time to ensure accuracy [7]. The goals of a
performance engineer may require high sampling
frequency that negates the low overhead and small data
production of sampling.

Sampling yields only a statistical measure of the
software’s execution patterns. It does not provide
completely precise numbers: if an event does not occur
in a sampling log, there is no guarantee that it did not
occur in execution. Therefore sampling may not be
useful for situations that need to track exact numbers of
events, for example, a singleton message to a task or an
exact relationship between requests and
acknowledgements. In periodic real-time systems, the
sampling interval needs to be randomized to avoid
sampling the same periodic software entity at every
sampling point.

Sampling may not be able to detect frequently
executed routines whose execution times are smaller
than the sampling frequency. In addition, manual trace
instrumentation usually tracks application-specific
events that could be difficult to capture by sampling. For
example, detecting a transition from a single-person
voice call to a conference call may require event tracing.

Sampling is not a good approach when event
causality is analyzed. Although it may extract a function
call stack at the sample time, it cannot track all function
calls or message exchanges. A performance engineer

who needs a complete message sequence chart or
component interaction graph might be better off choosing
event tracing.

3. Hybrid Data Collection

Let us summarize the previous section. Event tracing
yields the most detailed and complete system execution
data. However, it takes time to instrument software,
tracing has a high overhead and may change the behavior
of the software system [6]. Statistical sampling is simple
to use and less intrusive to software system execution, but
does not provide causality relationships and exact data.

Embedded software systems, such as mobile devices,
have real-time constraints and therefore require
performance profiling methods with low overheads. On
the other hand, performance analysis of such devices
often involves causality relationships and precision
requirements. For example, a performance engineer needs
to know exactly when a task starts processing a message
in a multiplayer game that changes the game environment,
since this may point to the cause of performance
bottleneck evidenced by numerous file accesses.

Often neither event tracing nor statistical sampling can
satisfy such conflicting requirements. The problem is
further compounded by the fact that test runs are not
entirely deterministic in mobile devices due to
interactions with other systems such as mobile network
elements. Therefore, performance data cannot be
collected during multiple test runs, but instead needs to be
collected during a single test run.

To collect performance data of embedded software
systems with low overhead and adequate completeness,
we propose to use a middleweight approach which is a
hybrid of heavyweight event tracing and lightweight
statistical sampling. Only a subset of all events is traced,
providing limited completeness and causality information.
Additional information is obtained through sampling.

To apply our method, a performance engineer has to
determine which part of the performance data should be
collected with event tracing and which with statistical
sampling. The following subsections describe these
choices using a couple of examples.

3.1. Processor time profiling

When the goal of a performance engineer is to
determine which software components and subsystems
spend most time running on a processor, statistical
sampling can provide most information. It can reveal the
approximate amount of time spent in a component, such
as a task, module or function. Event tracing can
supplement this information in a couple of areas. First, it
can precisely identify switches of very high level
components, such as tasks. Second, it can demonstrate the

component execution causality by tracking message
exchanges. For example, consider the synchronization
between tasks A and B in Figure 2. After sending
message m1, task A enters a wait state where it waits for
a state synchronization callback m2 from task B before
continuing its execution. Here, event tracing can record
and timestamp the sending of messages m1 and m2,
while sampling can provide more in depth performance
data during time intervals [t1, t2], [t2, t3], [t3, t4]. Just
sampling is not enough to provide the crucial
synchronization information.

Task A Task A

Task B

t (s)

m1 m2

t4t3t2t1

Figure 2: Task state synchronization

Profiling system interrupts requires event tracing as
well. Even though the intrusion cost of tracing interrupts
is high, sampling cannot be used here, because the
execution times of interrupt handlers are much smaller
than the sampling frequency.

3.2. Resource usage and energy profiling

In mobile devices power consumption varies
depending on the peripherals used. During the system
execution, software accesses peripherals. These accesses
need to be recorded to determine when a peripheral is
used. In resource usage and energy profiling, complete
information about active and inactive peripherals is
required. Event tracing needs to be used to track state
transitions of Bluetooth, GPS or infrared subsystems.
The intrusion cost of recording “on” and “off” events of
peripherals is low since they occur infrequently.

Statistical sampling can complement event tracing by
providing information that is too expensive to obtain
using event tracing. For example, the processor power
management puts the processor in a low power sleep
mode when no software is scheduled to run. Unlike
Bluetooth mode changes, the processor’s transition to
the sleep state may be too frequent and too expensive to
track via instrumentation. Statistical sampling can reveal
the processor’s idle state with enough accuracy as long
as the context switch time is an order of magnitude
larger than the sampling frequency.

Another opportunity for sampling is presented by
devices with multiple active modes. As mentioned in
section 2.1, the overhead of tracing every state transition
of a peripheral may be too high. While tracing could

provide information about major “on” and “off” states,
sampling could complement this information with
infrequent samples of secondary states allowing more
precise system mapping than achieved with just tracing.

3.3. Hybrid approach discussion

The proposed hybrid approach for performance data
acquisition in embedded software systems has the
potential to limit the data collection overhead while
providing partial completeness and causality.

It is important to understand the requirements for
performance data acquisition, which are domain and
application specific. In different domains event tracing,
statistical sampling, or our hybrid approach may provide
the best solution. Our hybrid approach is sensitive to the
choice of which performance data to collect using event
tracing and which by statistical sampling. A couple of
heuristics would be to trace infrequent events and non-
deterministic events that provide causality information.
However, further research is needed on how to make
these choices.

The hybrid approach also yields the following
benefits:
• Can provide useful profiling results in shorter

execution runs than can be provided by pure
statistical sampling.

• Can be used to profile events that occur infrequently.
• Limits the profiling data volume, which makes

storing, transfer and post processing easier.
Performance engineers are more likely to make use
of profilers if they are easy to use.

• Allows reconstructing the dynamic behavior of a
software system.

The proposed hybrid approach also has some
limitations:
• Unless engineered intelligently, our hybrid approach

could still inherit the drawbacks of both event
tracing and statistical sampling.

• Trace instrumentation is still required, which may
alter the behavior of the original software system.

• It yields two separate sets of profiling data. These
two sources of information need to be combined and
synchronized during post-mortem analysis.

Certain information could be reconstructed from
statistical samples gathered during an execution. Events
that deterministically precede events captured in a sample
could be added to the performance data. This direction
needs to be explored in future research.

4. Related Work

Several tools exist for performance profiling of
software systems. Many of these are sampling based
profilers [1]. Some tools, such as Intel’s Vtune [9],

provide event tracing capabilities in addition to statistical
sampling. However, the user cannot simultaneously use
event tracing and statistical sampling during a single test
run.

Hollingsworth et all [2] developed a hybrid data
collection approach that uses event tracing to record
state transitions in counter and timer data structures.
These structures are then sampled periodically to collect
performance data. Our hybrid approach uses event
tracing to record a subset of all events of interest. The
remainder of events is recorded through statistical
sampling.

5. Conclusion

This paper describes a hybrid approach to the
performance data collection. The hybrid approach
involves striking a balance between event tracing and
statistical sampling, combining the completeness of
event tracing with low cost of statistical sampling. In
addition, the proposed approach limits the profiling data
volume. Useful profiling results can be obtained with
relatively short execution runs.

We have described the use of a hybrid data collection
approach for software execution time and resource
consumption analyses. We believe that such an approach
should be incorporated in future profilers. It is likely that
other dynamic analysis domains would also benefit from
incorporating both complete and sampling based data
collection.

6. References

[1] J. Anderson , L. Berc, J. Dean, S. Ghemawat, M.

Henzinger, S. Leung, R. Sites, M. Vandevoorde, C.
Waldspurger, W. Weihl, Continuous Profiling: Where
Have All the Cycles Gone?, Proceedings of the 16th ACM
Symposium on Operating Systems Principles, 1997

[2] M. Arnold, B. Ryder, A Framework for Reducing the Cost
of Instrumented Code, Proceedings of the Conference on
Programming Language Design and Implementation
(PLDI), 2001, pp. 168-179.

[3] J. Hollingsworth, B. Miller, J. Cargille, Dynamic Program
Instrumentation for Scalable Performance Tools,
Proceedings of the Scalable High Performance
Computing Conference, 1994

[4] R. Lencevicius, E. Metz, A. Ran; Software Validation
using Power Profiles, Proceedings of the 20th IASTED
International Conference on Applied Informatics (AI
2002), Feb 2002.

[5] E. Metz, R. Lencevicius, Efficient Instrumentation for
Performance Profiling, Proceedings of the 1st Workshop
on Dynamic Analysis, 2003, pp. 143–148.

[6] D. Stewart, Measuring Execution Time and Real-Time
Performance, Embedded Systems Conference (ESC), 2001.

[7] K. Subramaniam, M. Thazhuthaveetil, Effectiveness of
Sampling Based Software Profilers, 1st International
Conference on Reliability and Quality Assurance, 1994, pp.
1–5.

[8] J. Vetter, D. Reed, Managing Performance Analysis with
Dynamic Statistical Projection Pursuit, Proceedings of the
1999 ACM/IEEE Conference on Supercomputing, 1999.

[9] Vtune Performance Analyzer, March 2004.
http://www.intel.com/software/products/vtune/

	Introduction
	Performance Data Collection
	Event tracing
	Statistical sampling

	Hybrid Data Collection
	Processor time profiling
	Resource usage and energy profiling
	Hybrid approach discussion

	Related Work
	Conclusion
	References

