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Abstract. Program errors are hard to find because of the cause-effect gap between the instant when an error occurs
and when the error becomes apparent to the programmer. Although debugging techniques such as conditional
and data breakpoints help in finding errors in simple cases, they fail to effectively bridge the cause-effect gap
in many situations. This paper proposes two debuggers that provide programmers with an instant error alert
by continuously checking inter-object relationships while the debugged program is running. We call such tool a
dynamic query-based debugger. To speed up dynamic query evaluation, our debugger implemented in portable Java
uses a combination of program instrumentation, load-time code generation, query optimization, and incremental
reevaluation. Experiments and a query cost model show that selection queries are efficient in most cases, while
more costly join queries are practical when query evaluations are infrequent or query domains are small. To enable
query-based debugging in the middle of program execution in a portable way, our debugger performs efficient
Java class file instrumentation. We call such debugger an on-the-fly debugger. Though the on-the-fly debugger
has a higher overhead than a dynamic query-based debugger, it offers additional interactive power and flexibility
while maintaining complete portability.
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1. Introduction

Many program errors are hard to find because of a cause-effect gap between the instant
when the error occurs and when it becomes apparent to the programmer by terminating
the program or by producing incorrect results (Eisenstadt, 1997). The situation is further
complicated in modern object-oriented systems which use large class libraries and create
complicated pointer-linked data structures. If one of these references is incorrect and violates
an abstract relationship between objects, the resulting error may remain undiscovered until
much later in the program’s execution.

Consider trying to debug the javac Java compiler, a part of Sun’s JDK distribution. During
a compilation, this compiler builds an abstract syntax tree (AST) of the compiled program.
Assume that this AST is corrupted by an operation that assigns the same expression node to

Substantial parts of this paper have previously appeared in Lencevicius et al. (1999, 2000a, b).
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Figure 1. Possible error in javac AST.

the field right of two different parent nodes (figure 1). The parent nodes may be instances of
any subclass of BinaryExpression; for example, the parent may be an AssignAddExpression
object or a DivideExpression object, while the child could be an IdentifierExpression. The
compiler traverses the AST many times, performing type checks and inlining transforma-
tions. During these traversals, the child expression will receive contradictory information
from its two parents. These contradictions may eventually become apparent as the compiler
indicates errors in correct Java programs or when it generates incorrect code. But even after
discovering the existence of the error, the programmer still has to determine which part of
the program originally caused the problem. How can debuggers help programmers to find
such errors as soon as they occur?

The programmer could try to use data breakpoints (Wahbe et al., 1993), i.e., break-
points that stop the program when the value of a particular field changes. However, even
conditional data breakpoints do not help to debug this error because they are specific
to a particular instance. With hundreds or even thousands of BinaryExpression instances,
and in the presence of asynchronous events and garbage collection, the effectiveness of
data breakpoints is greatly diminished. In addition, it is hard to express the above er-
ror as a simple booleam expression. The error occurs only if the expression is shared
by another parent node—a relationship difficult to observe from the other parent or from
the child itself. In other words, by looking just at the field right of some BinaryExpres-
sion object it is impossible to determine whether this object and its new field value are
erroneous.

A programmer could also try to use another conventional tool, conditional breakpoints
(Kessler, 1990). Conditional breakpoints check a condition at a particular program location
and stop the program if this condition is true. Conditional breakpoints fail to find javac bug for
the same reason: the condition cannot easily reference objects not reachable from the scope
containing the breakpoint. Yet we must find exactly such an object the BinaryExpression
containing a duplicate reference to the child Expression object. To accomplish this task,
the programmer could write custom testing code for use by conditional breakpoints. For
example, the javac compiler could keep a list of all BinaryExpression objects and include
methods that iterate over the list and check the correctness of the AST. However, writing
such code is tedious, and the testing code may be used only once, so the effort of writing it
is not easily recaptured. Finally, even with the test code at hand, the programmer still has to
find all assignments to the field right and place a breakpoint there; in javac, there are dozens
of such statements. In summary, conditional breakpoints provide minimal support and the
programmer ends up doing all the work “by hand”.
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A more effective way to check an inter-object constraint would be to combine conditional
breakpoints with a static query-based debugger (Lencevicius et al., 1997). Similar to an SQL
database query tool, a static query-based debugger (QBD) allows user to stop a program
at any instant and to find all object tuples satisfying a given boolean constraint expression.
For example, the query

BinaryExpression* e1, e2. e1.right == e2.right && e1 != e2

would find the objects involved in the above javac error. The breakpoints would then carry
the condition that the above query return a non-empty result. However, the queries have
to be fully reevaluated every time that the program is stopped. Unfortunately, even well-
optimized QBD executions would be inefficient for this task. With hundreds or thousands
of BinaryExpression objects, each query becomes quite expensive to evaluate, and since
the query is reevaluated every time a conditional breakpoint is reached, the program being
debugged may slow down by several orders of magnitude. This claim is substantiated in
Section 5.3.1.

This paper proposes a new solution, dynamic query-based debugging, which can over-
come these problems. In addition to implementing the regular QBD query model, a dynamic
query-based debugger continually updates the results of queries as the program runs, and
can stop the program as soon as the query result changes. To provide this functionality,
the debugger finds all places where the debugged program changes a field that could affect
the result of the query and uses sophisticated algorithms to reevaluate the query incremen-
tally. Therefore, a dynamic query-based debugger finds the javac AST bug as soon as the
faulty assignment occurs, and it does so with minimal programmer effort and low program
execution overhead.

The implementation of the dynamic query-based debugger requires users to specify
queries before the program execution starts. Queries are enabled from the beginning of
the program execution and remain active until its end. These requirements diminish the
usefulness of the debugger because users can not restrict queries to parts of the program
execution and can not ask new queries in the middle of a program run. In a long-running
program, or in a hard-to-reproduce test case, the ability to add queries on the fly would
save a substantial amount of debugging time. Conventional debuggers allow programmers
to place simple breakpoints and check variable values on the fly but they do not support
complex queries.

An on-the-fly query-based debugger implementation proposed in this paper makes query-
based debuggers fully interactive while maintaining debugging portability for different Java
virtual machines and operating systems. With the on-the-fly debugger, programmers can
stop a program at any time using conventional breakpoints or another already enabled query,
enter a query or change it later when more information about the error becomes available.
The on-the-fly debugger adds a capability to stop the javac program just before the AST
construction phase and enable the query. It also allows changing the query later. The system
is portable without any changes across Java virtual machines, operating systems, and CPUs.
The system was tested on Sun SPARC system running Solaris with Solaris Java 1.2 VM
and Intel system running Windows NT with Sun Java 1.2 VM.
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This paper discusses implementations and trade-offs of the dynamic and on-the-fly query-
based debuggers. We have implemented debuggers for Java in 100% portable pure Java.
The dynamic query-based debugger prototype is efficient; experiments with large pro-
grams from the SPECjvm98 suite (Standard Performance Evaluation Corporation, 1998)
show that selection queries are very efficient for most programs, with a slowdown of
less than a factor of two in most experiments. Through measurements, we determined
that 95% of all fields in the SPECjvm98 applications are assigned less than 100,000
times per second. Using these numbers and individual evaluation times, our performance
model predicts that selection queries will have less than 43% overhead for 95% of all
fields in the SPECjvm98 applications. More complicated join queries are less efficient
but still practical for small query domains or programs with infrequent queried field
updates.

The on-the-fly debugging overhead measured for programs from the SPECjvm98 suite
show that the instrumented programs with inactive debugger suffer an overhead of less
than 70% for tested applications. In our experiments, selection query overheads range up
to factor 9.5. Join queries are less efficient but may be practical for short debugging runs or
small query domains.

2. Query model

Query-based debugging uses the query model proposed in Lencevicius et al. (1997). The
query syntax is as follow:

<Query> ::== <DomainDeclaration> {; <DomainDeclaration>}.
<ConditionalExpression>

<DomainDeclaration> ::== <ClassName> [∗] <DomainVariableName>
{<DomainVariableName>}.

The query has two parts: one or more DomainDeclarations that declare variables of class
ClassName, and a ConditionalExpression. The first part is called the domain part and the
second the constraint part. Consider another javac query:

FieldExpression fe; FieldDefinition fd.
fe.id == fd.name && fe.type == fd.type && fe.field !=fd

The first part of the query defines the search domain of the query, using universal quantifi-
cation. The domain part of the above example should be read as “for all FieldExpressions
fe and all FieldDefinitions fd...”. FieldExpression is a class name and its domain contains all
instances of the class. If a “∗” symbol in a domain declaration follows the class name (as in
the javac query discussed in the introduction), the domain includes all objects of subclasses
of the domain class, otherwise the domain contains only objects of the indicated class it-
self. We have not implemented existential quantifiers or uniqueness operator in the search
domain because of time constraints. The possible use of existential quantifiers is discussed
in Lencevicius (2000a).
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The second part of the query specifies the constraint expression to be evaluated for each
tuple of the search domain. Constraints are arbitrary Java conditional expressions as defined
in the Java specification §15.24 (Gosling et al., 1996) with certain syntactic restrictions.
They should not contain variable increments which have no semantic meaning in a query.
Constraints can contain method invocations; we assume that these methods are side effect
free, i.e. they do not modify any existing program objects. We have not implemented array
handling because of time constraints, so we currently disallow array accesses. However,
arrays introduce no new implementation difficulties.

Semantically, the expression will be evaluated for each tuple in the Cartesian product of
the query’s individual domains, and the query result will include all tuples for which the
expression evaluates to true (similarly to an SQL select query). Conceptually, the debugger
reevaluates a query after the execution of every bytecode, ensuring that no result changes
are unnoticed. The debugger stops the program whenever the result changes. In practice, the
debugger reevaluates the query as infrequently as we could allow without violating these
semantics. In addition, the debugger reevaluates the query only for the part of the query
domain that has changed since the last evaluation. Section 4.4.1 describes the incremental
reevaluation technique in detail.

Dynamic queries should be evaluated only when the queried objects are in a consistent
state. In other words, the expression evaluation should succeed and provide meaningful re-
sults. At some program execution points the query evaluation may be unsafe. For example,
during an insertion of an element into the list, the list may have an inconsistent state. There-
fore, query results can be updated only when all abstractions involved are in a consistent
state. However, excluding inconsistent regions is problematic since some of these regions
may hide genuine errors. Prohibiting query execution from a part of the runtime makes it
more difficult for programmers to understand the query and the program. Consequently,
such region exclusion should be left to the direct supervision of programmers, especially
since automatic determination of inconsistent states is probably impossible. One way to give
users control over excluding inconsistent regions is to use guarded queries. With each query
users would provide a “when” or “while” clause that could be consistently evaluated at any
time. The rest of the query is evaluated only when (or while) the guard is true. Guards allow
to declaratively specify program regions where the query reevaluation is safe. Even though
programmers have to spend time writing guards, such programmer assistance seems to be
reasonable when a guard is already available or easy to construct. Introduction of guards
does not complicate the query model.

We refer to queries with a single domain variable as selection queries; following common
database terminology, we call the rest of the queries join queries because they involve a
join (Cartesian product with selection) of two or more domain variables. Join queries with
equality constraints only (e.g., p1.x == p2.x) are called hash joins. They can be evaluated
more efficiently for most domains using a hash table (Lencevicius et al., 1997).

3. Examples

This section presents examples of debugging situations handled by dynamic query
debuggers.
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Figure 2. Another possible error in javac AST.

3.1. Javac compiler

What are examples of inter-object constraint violations that may be difficult to trace back
to their origins? We have already discussed one possible error in the javac Java compiler in
the introduction. Another error that could occur in javac involves the relationship between
FieldExpression and FieldDefinition objects. Consider a situation where a FieldExpression
object no longer refers to the FieldDefinition object that it should reference. Due to an error, the
program may create two FieldDefinition objects such that the FieldExpression object refers to
one of them, while other program objects reference the other FieldDefinition object (figure 2).
In other words, javac maintains a constraint that a FieldExpression object that shares the type
and the identifier name with a FieldDefinition object must reference the latter through the
field field. Programmers can detect a violation of this constraint using the following query:

FieldExpression fe; FieldDefinition fd.
fe.id == fd.name && fe.type == fd.type && fe.field != fd

This complicated constraint can be specified and checked with a simple dynamic query, but
it would be difficult to specify using conditional breakpoints.

3.2. Ideal gas tank example

Another program we examined is an applet simulating a tank with ideal gas molecules.
Although this applet is a simple simulation of gas molecules moving in the tank and colliding
with the tank walls and each other, it has some interesting inter-object constraints. First,
all molecules have to remain within the tank, a constraint that can be specified by a simple
selection query:

Molecule*m. m.x < 0‖ m.x > X RANGE ‖ m.y < 0 ‖ m.y > Y RANGE

Another constraint requires that no two molecules occupy the same position. Even this
simple application may violate the constraint in different places: in the regular molecule
move method, in a method that handles molecule bounces from the walls, and so on. The
following query discovers the constraint violation:

Molecule∗ m1 m2. m1.x == m2.x && m1.y == m2.y && m1 != m2
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This constraint is interesting because its violation is a transient failure. Transient failures
disappear after some period of time, so even though the program behaves differently than
the programmer expected, queries will not be able to detect failures if they are asked too late.
The molecule collision error is such a transient failure—it will disappear as the molecules
continue to move. However, the applet will behave erroneously: for example, molecules
that should have collided with each other will pass through each other. Dynamic queries
are necessary to find transient failures, as delayed query reevaluation may fail to detect the
error entirely.

4. Implementation

This section presents the implementation of the dynamic query-based debugger and the
modification of this implementation for the on-the-fly debugging. We have implemented
query-based debuggers in pure Java. We used Java’s custom class loaders (Liang and Bracha,
1998) to perform load-time code instrumentation. Java’s bytecode class files proved simple
to instrument. The debugger creates custom query evaluation code by using load-time code
generation. The debugger can be ported to other languages (e.g. Smalltalk) that have an
intermediate level format similar to bytecodes. The prototype implementation only demon-
strates the query-based debugging and on-the-fly capability; for production use, the system
should be integrated into a full-fledged debugging suite.

4.1. General structure of the system

Figure 3 shows a data-flow diagram of the on-the-fly debugger. The dynamic query-based
debugger structure is similar, only queries have to be specified before program execution.
To debug a program using an on-the-fly query-based debugger, the user runs a standard
Java virtual machine with a custom class loader. The custom class loader loads the user
program and instruments the bytecodes loaded by adding debugger invocations for each
object creation and field assignment. The class loader also generates and compiles custom
debugger code. After loading, the Java virtual machine executes the instrumented user

Figure 3. Data-flow diagram of on-the-fly debugger.
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program. Whenever the program reaches instrumentation points, it checks whether the
debugger is active and if so, invokes the custom debugger code, which calls other debugger
runtime libraries to reevaluate the query and to generate query results. Query results are
shown as a collection of tuples containing object instances that satisfy the query. Our
implementation displays a simple serialized text view of objects; a production debugger
could display a manipulative graphical view of objects.

The debugger currently does not handle multithreaded code since operations that affect
the query change set would need to be disallowed in threads concurrent to the one evaluating
the query. This is a difficult problem and we have not addressed it in our implementation.
The debugger does not handle native methods, because their debugging is outside the scope
of a Java debugger.

4.2. Change monitoring

Debuggers update the query result every time the debugged program performs an operation
that may affect the query result. Thus, the program being debugged has to invoke the
debugger after every event that could change the query result. The query result may change
because some object assigns a new value to one of its fields or because a new object is
constructed. However, not all field assignments and object creations affect the query. We
call the set of constructors and object field assignments affecting the results of a query the
query’s change set. All assignments and all constructors form a conservative change set
for all queries, however, we are interested in finding a reduced change set that is as small
as possible. In our implementation, this change set contains only constructors of domain
objects and assignments to domain object fields referenced in a query. Static analysis could
decrease the size of the reduced change set even more.

Consider the Molecule query:

Molecule∗ m1 m2. m1.x == m2.x && m1.y == m2.y && m1 != m2

The change set of this query consists of the constructors of the Molecule class and its
subclasses as well as assignments to Molecule fields x and y. Assignments to other molecule
fields such as color are not included in the reduced change set.

The change set of a query indicates to the debugger which assignments and constructors
are relevant for query evaluation. The class loader of a dynamic debugger instruments
exactly this set. The on-the-fly debugger instruments all assignments and all constructors at
load time, but when a query is defined, the on-the-fly debugger uses the reduced change set
to decide when a query should be reevaluated. Before definition of any queries the on-the-fly
debugger does not execute evaluation code at all.

To support on-the-fly debugging, the on-the-fly debugger keeps collections of objects
belonging to all classes. A dynamic debugger maintains only collections of objects in do-
main classes. These collections are necessary to evaluate join queries. Since the standard
Java debugging API does not allow debuggers to retrieve all objects of a class, debuggers
have to track creation of all program objects to have access to all query domain objects.
Every time an object is created, the program invokes the debugger which places the new
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object into a collection according to its class. During join query evaluation a debugger uses
object collections to iterate through all domain objects. To maintain query correctness and
to facilitate garbage collection, the debugger allows the garbage collector to delete dead
objects from domain collections. Object tracking, although inexpensive by itself, becomes
costly because of the excessive memory use—for each object created by a program, the
debugger has to maintain a WeakReference object and space in a domain collection. Refer-
ring to domain objects through weak references allows the Java virtual machine garbage
collector to collect all objects that are referenced only by the debugger. However, even
though domain objects are garbage collected, the weak references themselves remain in
the collection, so the collection grows as the program runs. Some programs like the gas
tank simulation (Section 3.2) create so many temporary objects that weak references fill all
available memory. To prevent such internal garbage, a more sophisticated implementation
uses an internal “garbage collector” to recycle the weak references no longer pointing to the
reachable objects. Unfortunately, the internal garbage collection of weak references adds
an additional speed overhead so we have not enabled it by default.

The change set of a query becomes complicated if constraints contain a chain of refer-
ences. Consider a query for the SPECjvm98 ray tracing program:

IntersectPt ip. ip. Intersection.z < 0

The Intersection field is a Point object, and the query result depends on its z value. The
query result may change if the z value changes, or if a new value is assigned to the
Intersection field. Furthermore, the Point object referenced by the Intersection field may
be shared among multiple domain objects. In this case, a change in one Point object can
affect multiple domain objects. A chain of references also occurs when a domain instance
method invokes methods on objects referenced in its fields, and these methods in turn de-
pend on the fields of the receiver. Tracking which objects accessed through a chain of field
references influence which domain objects becomes a complicated task; for example, to
do it efficiently, nested objects need to point back to the domain objects that reference
them. To simplify the prototype implementation, we support only explicit chains of ref-
erences in a query, and we do not handle methods that access chains of references. Our
debugger rewrites the query by splitting the chain into single-level accesses and by adding
additional domains and constraints. For example, the ray tracing query above is rewritten
as:

IntersectPt ip; Point∗ Intersection.
ip.Intersection == Intersection && Intersection.z < 0

Chain reference splitting adds overhead by introducing additional joins into the query but it
also allows users to ask more complex queries. The overhead can be an order of magnitude
when a selection query is rewritten as a join query.

To summarize, debuggers use the change set of the query to reevaluate the query after
interesting events. The instrumented program calls the debugger after every event that could
change the result of the query, and the debugger reevaluates the query during each call if
the change affects query domains.



P1: GDU

Automated Software Engineering KL1730-04 November 26, 2002 21:52

UNCORRECTED
PROOF

48 LENCEVICIUS, HÖLZLE AND SINGH

4.3. Java program instrumentation

In a dynamic query-based debugger, the user specifies a query string at the program start-up.
The debugger then instruments Java class files during loading to invoke the debugger after
all events that may change the result of the query. The debugger finds assignments to the
fields referenced in the query change set and inserts debugger invocations after each one
of them. The system also inserts debugger invocations after each call to a constructor of a
domain object. Such an implementation cannot support on-the-fly debugging because the
debugger has to know a query and its change set to instrument class files at load time. Class
files cannot be instrumented after loading without changing the Java virtual machine. On
the other hand, changing the JVM would compromise the portability of the debugger across
different virtual machines.

If queries are unknown before the program execution, the program has to invoke the
debugger after all events that may change the result of any possible query. The on-the-fly
debugger instruments class files by inserting debugger invocations after each assignment to
an object field. The system also inserts debugger invocations after each call to a constructor
of an object. Figure 4 shows an example of such instrumentation process for a Java method.
To instrument class files, the loader transforms them in memory into a malleable format
using modified class-file handling tools from the Binary Component Adaptation library
(Keller and Hölzle, 1998). Then the loader finds all putfield bytecodes and adds invokestatic
bytecodes invoking debugger code after the putfield bytecodes. Figure 5 shows the exact
bytecodes that replace a single putfield. The system also inserts such debugger invocations
after each call to a constructor. The debugger adds a reference to the run method of the
Debugger class into the constant pool of the instrumented class. The method takes as an
argument the object updated by the putfield—a Molecule object in the example. This object
is on the stack before execution of the putfield, so a copy of it can be obtained by stack
manipulation (figure 5) that duplicates the top two values on the stack (bytecode #22 in

Figure 4. Java program instrumentation.
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Figure 5. On-the-fly debugging instrumentation.

figure 5) and then discards the top one (the value assigned by the putfield—bytecode #26 in
figure 5). The debugger determines the correct types of objects from the class file’s constant
pool. After instrumentation, the class loader transforms the code back into the class file
format and passes the image to the default defineClass method.

To limit the overhead if the on-the-fly debugger is not enabled, the instrumentation inserts
a test around each putfield code. It is possible to tie the enabling flag to a class, so debugger
would be “enabled” per class, however we have not implemented such a scheme. If the
debugger is not enabled, the program executes only two additional bytecodes per each
putfield bytecode: a load of a debugger flag (getstatic—bytecode #16 in figure 5) and a
conditional jump (ifeq—bytecode #19 in figure 5) to the original putfield. Figure 5 shows
the instrumentation performed on a single putfield bytecode with a “fast path” of only two
extra bytecodes. However, if the debugger is enabled, the overhead is higher. In this case,
the debugger has to replicate the reference to the updated object, pass it to the debugger’s
run method and invoke that method. Then the debugger determines if modified object
belongs to one of the query’s domain classes, and if so proceeds with further evaluation.
The instrumentation increases class file sizes less than 7%.

In a dynamic debugger, the query is known beforehand and only putfield bytecodes be-
longing to a change set are instrumented. Since the debugger is enabled from the beginning
of the execution, no bytecodes checking the debugger activation are inserted.

The instrumentations performed on the bytecode are correct with respect to JVM verifiers.
We do not introduce any unverifiable modifications and we preserve the type safety that is
checked by the verifier. We have executed the applications on standard JVMs that check the
bytecode integrity.

The next section describes how the debugger determines which assignments and con-
structors influence the query result and when the query is reevaluated.

4.4. Query execution

This section describes what happens in a dynamic debugger after an instrumented event
occurs in the debugged program. Whenever the program invokes the debugger, it passes the
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Figure 6. Control flow of query execution.

object involved in the event. If the event is a field assignment, the program also passes the
new value to be assigned to the field. Figure 6 shows the control flow of the query execution.
First, the debugger checks whether the changed object is a domain object. Consider a query
that finds ld objects with a negative type code:

ld x. x.type < 0

Here, ld is a subclass of the Expression class, and the type field is defined in Expression.
Thus, the program may invoke the debugger when the type field inherited from the Expression
class is assigned in an object of another Expression subclass. For example, the program
invokes the debugger after assigning the type field in an ArithmeticExpression object. This
object shares the type field with the domain class objects, but it does not belong to the query
domain, so the debugger immediately returns to the execution of the user program without
reevaluating the query.

If the object passes the domain test, the debugger checks whether the value being assigned
to the object field is equal to the value previously held by the field. For example, some
molecules do not move in the ideal gas simulation, yet their coordinates are updated at each
simulation step. Such assignments do not change the result of the query and can be ignored
by the debugger. The debugger does not perform this test if the invoking event is an object
creation.

After these two tests, the debugger starts reevaluating the query. Our previous work
on static query-based debuggers (Lencevicius et al., 1997) contained a query evaluation
algorithm similar to the evaluation of a relational database join coupled with a selection. The
dynamic query-based debugger improves upon the previous algorithm by using incremental
reevaluation as discussed below.

4.4.1. Incremental reevaluation. When the program invokes the debugger, it passes the
changed object to the debugger. From the properties of our change sets, we know that this
object is the only object that changed in the query domain since the last query evaluation.
Consequently, a full reevaluation of the query for all domain objects is unnecessary. We
use incremental reevaluation techniques developed for updates of materialized views in
databases (Buneman and Clemons, 1979; Blakeley et al., 1986) to speed up query execution.
Consider a query, a join of three domains A × B × C, e.g.,

A a; B b; C c. a.x == b.y && b.z < c.w

The “×” symbol denotes a Cartesian product with some selection constraint; the “∪” symbol
below denotes set union. If an object of domain B changes, the new result of the query is

A × Bchanged × C = (A × (Boriginal − �B) × C) ∪ (A × �B × C)
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Figure 7. Incremental query evaluation.

The first part of the result is the result of the previous query evaluation after removing
all tuples that contain the changed object �B. The debugger stores this result—empty for
queries in which non-empty result denotes a program error—and does not need to reevaluate
it. The second part of the result contains only the changed object (�B) of domain B combined
with objects of the other domains. The debugger evaluates the changed part in the same way
as it would evaluate the whole query. Figure 7 shows an incremental evaluation of the query.
The execution starts with the changed object �B passed from the user program. Because
this is the only object for which the debugger evaluates the first constraint, the intermediate
result is likely to be empty. In general, the size of intermediate results is much smaller in
the incremental evaluation, speeding up the query evaluation. If intermediate results are
not empty, the debugger continues the evaluation in the usual manner and produces an
incremental result (A×�B×C). The system then merges the result with the previous result
to form the complete query result.

The query evaluation is further optimized by finding efficient join orders and by using
hash joins as described in Lencevicius et al. (1997). Because sizes of domains change during
program runtime and debuggers cannot efficiently determine the selectivities of constraints,
we use simple heuristics for join ordering: execute selections first, equality joins next, and
inequality constraints last.

4.4.2. Custom code generation for selection queries. Constraints of selection queries are
usually very simple and can be evaluated very fast. Instead of performing the general query
execution algorithm described in Section 4.4.1, which goes through numerous general steps
and calls a number of methods, the debugger can evaluate just the few tests necessary to
check the selection constraints. Because these tests depend on the query asked, the code for
their evaluation has to be generated at program load time. During the loading of the user
program, the debugger generates a Java class with a debug method. Figure 8 shows such a
method for the query

Molecule1 m. m.x > 350

The first three statements of the method contain the code common for both unoptimized and
optimized versions. This code performs the domain test and the same value assignment test
described in Section 4.4. The optimized code that follows evaluates the selection constraint
on the changed object and calls the debugger runtime only if the query has a non-empty
result. The debugger uses the debug method as an entry point that the user program calls when
it reaches instrumentation points. With custom code generated, the debug method contains
all code needed to evaluate a selection, so the reevaluation costs only one static method
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Figure 8. Selection evaluation using custom code.

call. Furthermore, the debug method—a member of a final class—may even be inlined into
the instrumentation points by a JIT compiler. We could also inline the bytecodes into the
instrumented method.

4.4.3. Query execution in an on-the-fly debugger. The query execution in the on-the-
fly debugger is the same as in the dynamic debugger. However, custom code generation
for selection queries and same value assignment test cannot be performed. It becomes
more important to quickly check whether an object that caused a debugger invocation
belongs to a relevant domain. If the object does not belong to the query domain, the de-
bugger immediately returns to the execution of the user program without reevaluating the
query.

4.5. Alternative on-the-fly implementations

On-the-fly debugging could be implemented using alternative techniques that may increase
the debugger efficiency. One approach would be to change the Java virtual machine. Even
though we did not pursue this approach because of its lack of portability, JVM changes may
lead to the most efficient implementations. These changes could be simple or sophisticated.
A simple JVM change would allow the debugger to retrieve all objects of a class.1 Such
capability would remove the necessity to track all objects of all classes and would reduce
both the direct object tracking overhead and excessive memory use by weak references.
More sophisticated JVM changes would allow to instrument already loaded classes and
avoid the overhead of extra bytecodes surrounding each putfield bytecode.

JVM changes are not portable. An alternative technique to speed up a debugger would be
to use shadow classes. In other words, while the debugger is not enabled, the program would
execute the code that is instrumented to check the debugger activation only at the beginning
of the methods and possibly at the back branches of the loops. When the debugger is
enabled, it would execute fully instrumented versions of the classes. Such fully instrumented
shadow methods would be invoked through the redirection at the beginning of the regular
methods. This method reduces the overhead of the instrumented putfield execution but does
not solve the problem of object tracking. Also, the debugger activation would be delayed
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until the instrumentation point is reached. Due to this delay, a debugger could miss some
errors.

5. Experimental results

Ideally, a test of the efficiency of a query-based debugger would use real debugging queries
asked by programmers using the tool for their daily work. Though we tried to predict what
queries programmers will use, each debugging situation is unique and requires different
queries. To perform a realistic test of the query-based debugger without writing hundreds
of possible queries, we selected a number of queries that in complexity and overhead cover
the range of queries asked in debugging situations. The selected queries contain selection
queries with low and high cost constraints. The test also includes hash-join and nested-join
queries with different domain sizes. The queries check programs that range from small
applets to large applications and (for stress-tests) microbenchmarks. These applications
invoke the debugger with frequencies ranging from low to very high, where a query has
to be evaluated at every iteration of a tight loop. Consequently, the experimental results
obtained for the test set should indicate the range of performance to be expected in real
debugging situations.

For our tests we used an otherwise idle Sun Ultra 2/2300 machine (with two 300 MHz
UltraSPARC II processors) running Solaris 2.6 and Solaris Java 1.2 with JIT compiler
(Solaris VM (build Solaris JDK 1.2 01, native threads, sunwjit)) (JavaTM 2, 1999). Execution
times are elapsed times and were measured with millisecond accuracy using the System
currentTimeMillis( ) method.

5.1. Benchmark queries

To test query-based debuggers, we selected a number of structurally different queries
(Table 1) for a number of different programs (Table 2):

• Queries 1 and 13 check a small ideal gas tank simulation applet that spends most of the
time calculating molecule positions and assigns object fields very infrequently. It has 100
molecules divided among Molecule1, Molecule2 and Molecule3 classes. The application
performs 8,000 simulation steps.

• Queries 2 and 14 check the Decaf Java subset compiler, a medium size program developed
for a compiler course at UCSB. The Token domain contains up to 120,000 objects.

• Query 3 checks the Jess expert system, program from the SPECjvm98 suite (Standard
Performance Evaluation Corporation, 1998).

• Queries 4–10, and 16–17 check the compress program from the SPECjvm98 suite. Our
queries reference frequently updated fields of compress.

• Queries 11–12 and 15 check the ray tracing program from the SPECjvm98 suite. The
Point domain contains up to 85,000 objects; the IntersectPt domain has up to 8,000 objects.

• Queries 18–20 check artificial microbenchmarks. These microbenchmarks stress test
debugger performance by executing tight loops that continuously update object fields.



P1: GDU

Automated Software Engineering KL1730-04 November 26, 2002 21:52

UNCORRECTED
PROOF

54 LENCEVICIUS, HÖLZLE AND SINGH

Table 1. Benchmark queries.

Invocation
frequency

Application Query Slowdown (events/s)

Ideal gas tank 1. Molecule1 z. z.x > 350 1.02 15,000

Decaf 2. Idx. x.type < 0 1.11 16,000

Jess 3. spec.benchmarks. 202 jess.jess.Token z. 1.25 169,000
z.sortcode == −1

Compress 4. spec.benchmarks. 201 compress.Output Buffer z. 1.18 1,900,00
z.OutCnt < 0

5. spec.benchmarks. 201 compress.Output Buffer z. 1.27
z.count() < 0

6. spec.benchmarks. 201 compress.Output Buffer z. 1.37
z.lessOutCnt(0)

7. spec.benchmarks. 201 compress.Output Buffer z. 5.83
z.complexMathOutCnt(0)

8. spec.benchmarks. 201 compress.Compressor z. 1.18 933,000
z.in count < 0

9. spec.benchmarks. 201 compress.Compressor z. 1.10 196,000
z.out count < 0

10. spec.benchmarks. 201 compress.Compressor z. 1.83
z.complexMathOutCount(0)

Ray tracer 11. spec.benchmarks. 205 raytrace.Point p. 1.23 787,000
p.x == 1

12. spec.benchmarks. 205 raytrace.Point p. 1.98 2,300,000
p.farther(100000000)

Ideal gas tank 13. Molecule1z; Molecule2 z1. z.x == z1.x && 2.13 54,000
z.y == z1.y && z.dir == z1.dir &&
z.radius == z1.radius (33 × 33 hash join)

Decaf 14. Lexer 1; Token t. 1.token == t && 3.43 25,000
t.type == 27 (120, 000 × 600 hash join)

Ray tracer 15. spec.benchmarks. 205 raytrace. Point p; 229 350,000
spec.benchmarks. 205 raytrace.IntersectPt ip.
p.z==ip.t && p.z < 0 (85,000 × 8,000 hash join) 229 350, 000

Compress 16. spec.benchmarks. 201 compress.Input Buffer z; 157 1,500,000
spec.benchmarks. 201 compress.Output Buffer z1.
z1.OutCnt == z.InCnt && z1.OutCnt < 100 &&
z.InCnt > 0 (1 × 1 hash join)

17. spec.benchmarks. 201 compress.Compressor z; 77 2,600,000
spec.benchmarks. 201 compress.Output Buffer z1.
z1.OutCnt < 100 && z.out count > 1 &&
z1.OutCnt/10 > z.out count (1 × 1 join)

Microbenchmark 18. Test5 z. z.x < 0 6.4 42,000,000

19. TestHash5 th; TestHash1 th1. th.i == th1.i 228 40,000,000
(1 × 20 hash join)

20. TestHash5 th; TestHash1 th1. th.i < th1.i (1 × 20 join) 930
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Table 2. Application sizes and execution times.

Application Original size (Kilobytes) Execution time (s)

1. Compress 17.4 50

2. Jess 387.2 22

3. Ray tracer 55.7 17

4. Decaf 55 15

5. Ideal gas tank 14.3 57

Structurally, queries can be divided into the following classes:

• Queries 1–12 and 18 are simple one-constraint selection queries with a wide range of
constraint complexities. For example, query 4 has a very simple low-cost constraint that
compares an object field to an integer. The more costly constraint in query 5 invokes a
method to retrieve an object field. Another costly alternative constraint (query 6) invokes
a comparison method that takes a value as a parameter. Finally, the most costly constraint
in query 7 performs expensive mathematical operations before performing a comparison.
Queries 8 and 9 have very similar constraints, but differ 4.8 times in debugger invocation
frequency. In this paper, by “debugger invocation frequency” we mean the frequency
of events in the original program that would trigger a dynamic debugger invocation,
i.e., the invocation frequency for a dynamic debugger that would perform no operations
and would have no overhead. Query 12 compares the parameter of the method to the
distance of a point to the origin. This query combines costly mathematical operations
with increased debugger invocation frequency, because its result depends on all three
coordinates of Point objects.

• Queries 13–17 and 19–20 are join queries. Queries 13–16 and 19 can be evaluated using
hash joins. The evaluation of queries 17 and 20 has to use nested-loop joins. For join
queries, the slowdown depends both on the debugger invocation frequency and sizes of
the domains. Queries 13–14 have low invocation frequencies; queries 15–17, 19–20 have
high invocation frequencies. Queries 14 and 15 have large domains.

The next section discusses the performance of a dynamic query-based debugger for these
queries. Section 5.3 then discusses the efficiency benefits of incremental evaluation, custom
selection code, and unnecessary assignment detection. Section 5.4 provides experiment
results for an on-the-fly debugger.

5.2. Execution time

Figure 9 shows the program execution slowdown for application programs when dynamic
queries are enabled. The slowdown is the ratio of the running time with the query active to
the running time without any queries. For example, the slowdown of query 3 indicates that
the Jess expert system ran 25% slower when the query was enabled.

Overall the results are encouraging. All selection queries except query 7 have overheads
of less than a factor of 2. We expect overheads of common practical selection queries to be in
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Figure 9. Program slowdown (queries 15–20 not shown). The slowdown is the ratio of the running time with
the query active to the running time without any queries. For example, the slowdown of query 3 indicates that the
Jess expert system ran 25% slower when the query was enabled.

the same range as our experimental queries; the performance model discussed in Section 6
supports this prediction.

Join queries have overheads ranging from 2.13 to 229 for applications. Hash queries
(which can be used for equality joins) are efficient for queries 13–14, and other joins are
practical for query 13 in which the domains contain only 33 objects each. Queries 15–17
have large overheads because of frequent invocations (e.g., 2.6 million times per second
for query 16) and large domains. Join query performance is acceptable if join domains are
small, and the program invokes the debugger infrequently. For large domains and frequently
invoked queries, the overhead is significant.

Microbenchmark stress-test queries 18–20 show the limits of the dynamic query-based
debugger. The benchmark updates a single field in a loop 40 million times per second. When
queries depend on this field, the program slowdown is significant. Selection query 18 has
a slowdown factor of 6.4, the hash-join evaluation has a slowdown of 228 times, and the
slower nested-loop join that checks twenty object combinations in each evaluation has a
slowdown of 930 times.

Though the microbenchmark results indicate that in the worst case the debugger can incur
a large slowdown, these programs represent a hypothetical case. Such frequent field updates
are possible only with a single assignment in a loop. Adding a few additional operations
inside the loop drops the field update frequency to 3 million times per second which is more
in line with the highest update frequencies in real programs. For such update frequencies,
the slowdown is much lower as indicated by query 4. Section 6 discusses the likelihood of
high update frequencies.

Figure 10 shows the components of the overhead:

• Loading time, the difference between the time it takes to load and instrument classes using
a custom class loader, and the time it takes to load a program during normal execution.
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Figure 10. Breakdown of query overhead as a percentage of total overhead. For example, 3% of query 14
overhead is spent on instrumentation, 34% on garbage collection, 3% in the first evaluation, and 60% in subsequent
reevaluations.

• Garbage collection time, the difference between the time spent for garbage collection in
the queried program and the GC time in the original program.

• First evaluation time, the time it takes to evaluate the query for the first time. For join
queries, the first query is the most expensive, because it sets up data structures needed for
future query reevaluations. We separate this time from the rest of the query evaluation
time, because it is a fixed overhead incurred only once.

• Evaluation time, the time spent evaluating the query. This component does not include the
first evaluation time. The first evaluation time and the evaluation time together compose
the total evaluation time.

Figure 10 shows the components of the overhead. For example, 3% of the overhead of
query 14 is spent on instrumentation, and 34% on garbage collection. The total evalua-
tion time is 63% of the overhead, with 3% spent in the first evaluation, and 60% spent
in subsequent reevaluations. On average, the largest part of the overhead is the evaluation
time (75.5%), while loading takes only 17% and garbage collection has a negligible over-
head (less than 7%) in most cases.2 The loading overhead becomes a significant factor
when the loaded class hierarchy is large, as in query 3 on the Jess system. The loading
overhead also takes a larger proportion of time when query reevaluations are infrequent
or fast as in queries 1, 2, 9, and 11. Garbage collection was not a significant factor ex-
cept in query 14 which creates 120,000 token objects, and in query 1 which has such a
small absolute overhead that even a slight increase in GC and loading time becomes a large
part of the overhead. Since the evaluation component dominates the overhead, especially
in high-overhead, long-running queries, evaluation optimizations are very important for
good performance. The next section discusses some optimizations already reflected in our
results.
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5.3. Optimizations

To evaluate the benefit of optimizations implemented in the dynamic query-based debugger,
we performed a number of experiments by turning off selected optimizations. Optimizations
in the Sections 5.3.1–5.3.3 are disabled independently.

5.3.1. Incremental reevaluation. The dynamic query debugger benefits considerably from
the incremental evaluation of queries. We disabled incremental query evaluation and reran all
queries. Table 3 shows the results of this experiment. The numbers in the table show the ratio
of the program running time with a non-incremental query to the program running time with
a fully optimized incremental query. For example, a program with query 2 ran for 2.5 hours,
which was 554 times slower than the optimized version using the incremental reevaluation
that finished in 16.4 seconds. Query 1 was the only query that the non-incremental debugger
was evaluated in a reasonable time. The overheads of all other queries were enormous; some
programs would have run for more than a day. For queries 3–12 and 14–17, we stopped query
reevaluation after the first 100,000 evaluations and estimated the total overhead. Despite
the large overall overhead, the individual non-incremental query evaluations are reasonably
fast. For example, even for large join queries 14 and 15, a single query evaluation only took
about 50 ms.

The join queries on compress have an overhead of only 9–11 compared to the incremental
optimized version. These joins did not benefit much from incremental evaluation and its
optimizations because the domains of these joins contain only a single object.

Overall, the experiments with non-incremental evaluation of queries show that incremen-
tal evaluation is imperative, greatly reducing the overhead and making a much larger class
of dynamic queries practical for debugging.

5.3.2. Custom generated selection code. To estimate the benefit of generating custom code
as discussed in Section 4.4.2, we ran all selection queries with the optimization disabled.
The results of the experiment are shown in Table 4. The numbers show the slowdown of
the unoptimized version compared to the optimized version. For example, a program with
query 4 ran 58 times slower than the the program with an optimized query.

The ideal gas tank applet and Decaf compiler queries did not benefit from this optimiza-
tion, because these programs reevaluate the query infrequently, and the optimization benefit
is masked by variations in start-up overhead. All other queries show significant speedups
with the optimization enabled. The benefit of the optimization increases with the frequency
of debugger invocations.

5.3.3. Same value assignment test. Before evaluating a query after a field assignment, the
debugger checks whether the value being assigned to the object field is equal to the value
previously held by the field. Such assignments do not change the result of the query and
can be ignored by the debugger.

Table 5 shows that the number of unnecessary assignments differs highly depending on
the programs or fields. While some programs and fields do not have them at all, others have
from 7% to 95% of such assignments. Only the ideal gas tank simulation, the Jess expert
system, and the ray tracing application have unnecessary assignments to the queried fields.
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Table 3. Overhead of non-incremental evaluation.

Slowdown
versus

Application Query optimized

Ideal gas tank 1. Molecule1 z. z.x > 350 1.16

Decaf 2. Id x. x.type < 0 554

Jess 3. spec.benchmarks. 202 jess.jess.Token z. z.sortcode == −1 5,725

Compress 4. spec.benchmarks. 201 compress.Output Buffer z. z.OutCnt < 0 402

5. spec.benchmarks. 201 compress.Output Buffer z. z.count() < 0 373

6. spec.benchmarks. 201 compress.Output Buffer z. z.lessOutCnt(0) 428

7. spec.benchmarks. 201 compress.Output Buffer z. 88
z.complexMathOutCnt(0)

8. spec.benchmarks. 201 compress. Compressor z. zin count < 0 233

9. spec.benchmarks. 201 compress.Compressor z. z.out count < 0 33.8

10. spec.benchmarks. 201 compress.Compressor z.
z.complexMathOutCount(0) 21.8

Ray tracer 11. spec.benchmarks. 205 raytrace.Point p. p.x == 1 8,496

12. spec.benchmarks. 205 raytrace.Point p. p.farther (100000000) 8,972

Ideal gas tank 13. Molecule1 z; Molecule2 z1. 10.3
z.x == z1.x && z.y == z1.y && z.dir == z1.dir &&
z.radius == z1.radius (33 × 33 hash join)

Decaf 14. Lexer l; Token t. 1.token == t && t.type == 27 576
(120,000 × 600 hash join)

Ray tracer 15. spec.benchmarks. 205 raytrace.Point p; spec.benchmarks. 205 raytrace. 54
IntersectPt ip.
p.z == ip.t && p.z < 0 (85,000 × 8,000 hash join)

Compress 16. spec.benchmarks. 201 compress.Input Buffer z; 11
spec.benchmarks. 201 compress.Output Buffer z1.
z1.OutCnt == z.InCnt && z1.OutCnt < 100 && z.InCnt > 0
(1 × 1 hash join)

17. spec.benchmarks. 201 compress.Compressor z; 9
spec.benchmarks. 201 compress.Output Buffer z1.
z1.OutCnt < 100 && z.out count > 1 && z1.OutCnt/10 > z.out count
(1 × 1 join)

Microbenchmark 18. Test5 z. z.x < 0 821

19. TestHash5 th; TestHash1 th1. th.i == th1.i (1 × 20 hash join) 6.6

20. TestHash5 th; TestHash1 th1. th.i < th1.i (1 × 20 join) 6.02

To check the efficiency of the same-value test, we disabled it while leaving all other
optimizations enabled. The results show that the test does not make much of a difference
in query evaluation for most queries. For selections that can be evaluated fast, the cost of
the same-value test is similar to the cost of the full selection evaluation. Only when the
selection constraint is costly (as in query 4), does the same-value test reduce the overhead.
For joins, the cost reduction is significant for the ideal gas tank query that contains 54%
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Table 4. Benefit of custom selection code (selection queries only).

Slowdown
versus

Application Query optimized

Ideal gas tank 1. Molecule1 z. z.x > 350 1.03

Decaf 2. Id x. x.type < 0 1.34

Jess 3. spec.benchmarks. 202 jess.jess.Token z. z.sortcode == −1 9.26

4. spec.benchmarks. 201 compress.Output Buffer z. z.OutCnt < 0 58

5. spec.benchmarks. 201 compress.Output Buffer z. z.count() < 0 51

6. spec.benchmarks. 201 compress.Output Buffer z. z.lessOutCnt(0) 47

Compress 7. spec.benchmarks. 201 compress.Output Buffer z. 12
z.complexMathOutCnt(0)

8. spec.benchmarks. 201 compress.Compressor z. z.in count < 0 37

9. spec.benchmarks. 201 compress.Compressor z. z.out count < 0 9.6

10. spec.benchmarks. 201 compress.Compressor z. 6
z.complexMathOutCount(0)

Ray tracer 11. spec.benchmarks. 205 raytrace.Point p. p.x == 1 15

12. spec.benchmarks. 205 raytrace.Point p. p.farther(100000000) 31

Microbenchmark 13. Test5 z. z.x. < 0 307

Table 5. Unnecessary assignment test optimization (excluding queries with no unnecessary assignments).

Slowdown %
versus unnecessary

Application Query optimized assignments

Ideal gas tank 1. Molecule1 z. z.x > 350 0.99 95

Jess 2. spec.benchmarks. 202 jess.jess.Token z. z.sortcode == −1 0.997 7

3. spec.benchmarks. 205 raytrace.Point p. p.x == 1 0.988 15

Ray tracer 4. spec.benchmarks. 205 raytrace.Point p. p.farther (100000000) 1.16 40

Ideal gas tank 5. Molecule1 z; Molecule2 z1. 1.61 54
z.x == z1.x && z.y == z1.y && z.dir == z1.dir &&
z.radius == z1.radius (33 × 33 hash join)

Ray tracer 6. spec.benchmarks. 205 raytrace.Point p; 1.02 15
spec.benchmarks. 205 raytrace.IntersectPt ip.
p.z == ip.t && p.z < 0 (85,000 × 8,000 hash join)

unnecessasry assignments. For other joins, the percentage of unnecessary assignments is
too low to make a difference.

To summarize, the test whether an assignment changes a value of a field costs only
one extra comparison per debugger invocation. It does not change the overhead for most
programs, but saves time when the number of unnecessary assignments is large or the query
expression is expensive.
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Table 6. On-the-fly debugging overhead.

Total Total assignment Original
number frequency (field program Disabled Enabled

Size of field assignments execution debugger debugger
Application (Kilobytes) assignments per second) time (s) slowdown slowdown

1. Compress 17.4 392,000,000 7,800,000 50.4 1.70 3.14

2. Jess 387.2 25,000,000 1,100,000 22.45 1.30 1.54

3. Db 12 67,000 897 72 1.0 1.0

4. Javac 548 100,000,000 2,600,000 38 1.27 1.62

5. Mpegaudio 117 148,000,000 2,600,000 49.5 1.25 1.96

6. Jack 127 5,700,000 214,000 26 1.15 1.19

7. Ray tracer 55.7 44,000,000 2,200,000 17 1.12 1.62

8. Decaf 55 7,900,000 528,000 15 1.15 1.40

9. Ideal gas tank 14.3 4,000,000 70,000 57 1.27 2.0

10. Microbenchmark 1 100,000,000 40,000,000 2.4 3.28 11.14

Column one gives application, column two—size of its class files, column three—total number of field assign-
ments during the program’s execution, column four—field assignment frequency, column five—original program
execution time, column six—the slowdown with instrumentation but without debugger invocations, column
seven—slowdown with debugger invocations, but with no query evaluations. For example, compress has the
size of 17.4 Kilobytes, has 392 million field assignments performed 7.8 million times per second. The program
executes in 50.4 seconds. Instrumented compress has a slowdown of 70% and with debugger enabled 3.14 times.

5.4. On-the-fly debugger overhead

To evaluate the on-the-fly debugger, we performed the following measurements. First of all,
since programs instrumented by the debugger suffer a slowdown even when the debugger
is not enabled, we measured this slowdown. Table 6 shows slowdowns together with the
total field assignment frequencies for SPECjvm98 programs as well as microbenchmarks.
This table indicates that adding two bytecodes (getstatic-ifeq) before each putfield costs less
than 70% for applications with an overhead of 3.3 times for a microbenchmark.

If the debugger is enabled, but the query is never evaluated, for example, because domains
contain only non-instantiated classes, programs have a larger slowdown. In this case, the
instrumented byte code invokes the debugger run method. This method at the very least
checks whether the changed object is a domain object. With the debugger enabled, but
no query ever evaluated, the applications have a slowdown ranging up to 3.14. The mi-
crobenchmark slowdown is 11.14, a number increased by the fact that the microbenchmark
assigns to a long integer field that needs more complicated instrumentation with a higher
overhead. Both experiments above do not include the object tracking overhead.

Finally, if a query needs to be reevaluated, the additional slowdown to reevaluate the
query depends on the query. A large part of the query reevaluation time is consumed
by the domain collection maintenance and by extra garbage collection. For example, in
selection query 11, 36% of the query evaluation time was due to the object collection
and additional GC overhead, 17% of the time was consumed by the domain class check.
Overheads for all queries are given in Table 7. Selection overhead ranges up to factor
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Table 7. On-the-fly query overhead.

Invocation
On-the-fly DQBD frequency

Application Query slowdown slowdown (events/s)

Ideal gas tank 1. Molecule1 z. z.x > 350 3.23 1.02 15,000

Decaf 2. Id x. x.type < 0 1.83 1.11 16,000

Jess 3. spec.benchmarks. 202 jess.jess.Token z. 4.05 1.25 169,000
z.sortcode == −1

Compress 4. spec.benchmarks. 201 compress.Output Buffer z. 6.3 1.18 1,900,000
z.OutCnt < 0

5. spec.benchmarks. 201 compress.Output Buffer z. 5.48 1.27
z.count() < 0

6. spec.benchmarks. 201 compress.Output Buffer z. 5.72 1.37
z.lessOutCnt(0)

7. spec.benchmarks. 201 compress.Output Buffer z. 9.36 5.83
z.complexMathOutCnt(0)

8. spec.benchmarks. 201 compress.Compressor z. 5.58 1.18 933,000
z.in count < 0

9. spec.benchmarks. 201 compress.Compressor z. 5.54 1.10 196,000
z.out count < 0

10. spec.benchmarks. 201 compress.Compressor z. 9.54 1.83
z.complexMathOutCount(0)

Ray tracer 11. spec.benchmarks. 205 raytrace.Point p. p.x == 1 4.82 1.23 787,000

12. spec.benchmarks. 205 raytrace.Point p. 4.82 1.98 2,300,000
p.farther(100000000)

Ideal gas tank 13. Molecule1 z; Molecule2 z1. 21.82 2.13 54,000
z.x == z1.x && z.y == z1.y && z.dir == z1.dir &&
z.radius == z1.radius (33 × 33 hash join)

Decaf 14. Lexer l; Token t. 1.token == t && t.type == 27 6.4 3.43 25,000
(120,000 × 600 hash join)

Ray tracer 15. spec.benchmarks. 205 raytrace.Point p; Inf 229 350,000
spec.benchmarks. 205 raytrace.IntersectPt ip.
p.z == ip.t && p.z < 0 (85,000 × 8,000 hash join)

Compress 16. spec.benchmarks. 201 compress.Input Buffer z; 384 157 1,500,000
spec.benchmarks. 201 compress.Output Buffer z1.
z1.OutCnt == z.InCnt && z1.OutCnt < 100 &&
z.InCnt > 0 (1 × 1 hash join)

17. spec.benchmarks. 201 compress.Compressor z; 263 77 2,600,000
spec.benchmarks. 201 compress.Output Buffer z1.
z1.OutCnt < 100 && z.out count > 1 &&
z1.OutCnt/10 > z.out count (1 × 1 join)

Microbenchmark 18. Test5 z. z.x < 0 28 6.4 42,000,000

19. TestHash5 th; TestHash1 th1. th.i == th1.i 935 228
(1 × 20 hash join)

20. TestHash5 th; TestHash1 th1. 935 930 40,000,000
th.i < th1.i (1 × 20 join)

This table gives program slowdown for different queries. First column gives the query, second column—the
program slowdown with this query enabled in the on-the-fly debugger, third column—the slowdown for the same
query in dynamic query-based debugger, fourth column—debugger invocation frequency if there was no overhead.
For example, query 3 has on-the-fly slowdown of 4.05 times, dynamic query slowdown of 25% and invocation
frequency of 169000 times per second.
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9.5. Selection query overheads almost totally depend on the program executed and neither
on the query itself, nor on the query reevaluation frequency. The low cost of selection
reevaluation seems to be overshadowed by the overheads of on-the-fly instrumentation,
domain collection maintenance, and garbage collection. These areas could yield substantial
optimization benefits. Alternatively, user could opt to use a special version of on-the-fly
debugger that allows only selections and does not need to maintain domain collections.

Join query overheads are very high. Query 15 was aborted after running for more than
a day. However, on-the-fly debugging may be used when programmers only need to check
query results during a part of prgram execution. We compared the overheads of the on-the-
fly debugger with the dynamic query debugger which instruments only the relevant field
assignments but has to run for the whole program execution time. The on-the-fly debugger
overhead is on average four times higher than the overhead of the dynamic debugger. The
performance is much closer for expensive queries. If programmer wants to inspect only
small part of the program runtime, the on-the-fly method is more useful than the dynamic
debugging. Also the convenience of asking a query at a breakpoint may be more important
than extra overhead.

6. Performance model

To better predict the performance of a dynamic query-based debugger for a wide class
of queries, we constructed a query performance model. The slowdown depends on the
frequency of debugger invocations and on the individual query reevaluation time. This
relationship can be expressed as follows:

T = Toriginal(1 + Tnochange* Fnochange + Tevaluate* Fevaluate)

This formula relates the total execution time of the program being debugged T and the
execution time of the original program Toriginal using frequencies of field assignments in the
program and individual reevaluation times. The model divides field assignments into two
classes:

• Assignments that do not change the value of a field. These assignments do not change the
result of the query. The debugger has to perform only two comparisons in this case—a
domain test and the value equality test, so it spends a fixed amount of time (Tnochange) in
such invocations independent of the query. We calculated Tnochange by running a query on a
program that repeatedly assigned the same value to the queried field; for the machine/JVM
combination we used, Tnochange = 66 ns.

• Assignments that lead to the reevaluation of a query. The time to reevaluate a query
Tevaluate for such an assignment depends on the query structure and on the cost of the
query constraint expression. For each query, we calculate Tevaluate by dividing the addi-
tional time it takes to run a program with a query into the number of debugger invo-
cations. This calculation gives an exact result for programs that have no unnecessary
assignments (Fnochange = 0). For example, for query 18 Tevaluate is 131 ns. Tevaluate for query
4 is 140 ns, which is close to the time to evaluate a similar query in a microbenchmark.
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When constraints are more costly, Tevaluate increases; for example, for the highest cost
selection query (query 10) it is 4.26 µs. It is even higher for join queries where it depends
on the size of domains in joins; for example, for query 16 it is 60 µs, and for query 15
which has large domains, it is 546 µs.

Using the values of reevaluation times and the frequency of assignments to the fields of the
change set, we can estimate the debugging overhead. First, we determine the typical field
assignment frequency.

6.1. Debugger invocation frequency

Debugger invocation frequency is an important factor in the slowdown of programs during
debugging. The program invokes the debugger after object creation and after field assign-
ments. For most queries, the field assignment component dominates the debugger invocation
frequency. To find the range of field assignment frequencies in programs, we examined the
microbenchmarks and the SPECjvm98 application suite. We instrumented the applications
to record every assignment to a field. Table 8 shows results of these measurements.

The maximum field assignment frequency in microbenchmarks is 40 million assignments
per second, but that would be difficult to reach in an application because the microbench-
marks contain a single assignment inside a loop. The compress program has the highest
field assignment frequency in the SPECjvm98 application suite, 1.9 million assignments
per second. Other SPEC applications, as well as the Decaf compiler and the ideal gas tank
applet, have much lower maximum field assignment frequencies.

Figure 11 shows the frequency distribution of field assignments in the SPECjvm98 appli-
cations. The left graph indicates how many fields have an assignment frequency in the range
indicated on the x axis. For example, only four fields are assigned between one million and
two million times per second. The right graph shows the cumulative percentage of fields

Table 8. Maximum field assignment frequencies.

Maximum frequency Original program
Application (field assignments per second) execution time (s)

1. Compress 1,900,000 50.4

2. Jess 169,000 22.45

3. Db 254 75

4. Javac 217,000 38

5. Mpegaudio 495,000 57.4

6. Jack 27,000 27

7. Ray tracer 787,000 17

8. Decaf 56,000 15

9. Ideal gas tank 23,150 57

10. Microbenchmark 40,000,000 2.4
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Figure 11. Field assignment frequency in SPECjvm98.

Figure 12. Predicted slowdown. The graph shows the predicted overhead as a function of update frequency. For
example, the predicted overhead of a low-cost selection query on a field updated 500,000 times per second is
6.5%; the predicted overhead of a high-cost query with the same frequency is a factor of 3.13.

that have assignment frequencies lower than indicated on the x axis; 95% of all fields have
fewer than 100,000 assignments per second.

To predict the overhead of a typical selection query, we can now calculate the overhead
as a function of invocation frequency. Figure 12 uses the minimum (130 ns) and maximum
(4.26 µs) values of Tevaluate from Table 9. to plot the estimated selection query overhead for a
range of invocation frequencies. For example, a selection query on a field updated 500,000
times per second would have an overhead of 6.5% if its reevaluation time was 130 ns. If
the reevaluation time was 4.26 µs, the overhead will be a factor of 3.13. It is possible that
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some selection queries will have even larger reevaluation times and consequently higher
overheads. The graph reveals that selection queries on fields assigned less than 100,000
times a second—95% of fields—have a predicted overhead of less than 43% even for the
most costly selection constraint. For less costly selections, the query overhead is acceptable
for all fields.

In the current model, the evaluation time Tevaluate models all sources of query overhead.
This time includes the actual reevaluation time as well as the additional garbage collection
time, the class instrumentation cost, and the first evaluation cost. It would be more exact
to model each of these overheads separately. However, for long running programs the
evaluation time dominates the total cost, so the values of Tevaluate are likely to fall in the
range we have covered.

In summary, the performance model predicts that most selection queries in a dynamic
debugger will have less than 43% overhead. The model can be used as a framework for
concrete overhead predictions and future model refinements. In the future, it is possible
to create a more detailed query performance model that takes into account query domain
sizes, operations used in the query constraints, and so on.

7. Queries with changing results

So far we discussed using dynamic queries for debugging, where the program stops as soon
as the query returns a non-empty result. However, programmers can also use queries to
monitor program behavior. For example, in the ideal gas tank simulation, users may want
to monitor all molecule near-collisions with a query:

Molecule* m1 m2. m1.closeTo(m2) && m1 != m2

Programmers may use this information to check the frequency of near-collisions, to find
out if near-collisions are handled in a special way by the program, or to check the corre-
spondence of program objects with the visual display of the simulation. In this case, the
debugger should not stop after the result becomes non-empty, but instead should continue
executing the program and updating the query result as it changes. Such monitoring, per-
haps coupled with visualization of the changing result, can help users understand abstract
object relationships in large programs written by other people. How can a debugger support
continuous updating of query results while the program executes?

The dynamic query-based debugger described above needs only a few changes to support
monitoring queries. The basic scheme and the implementation of the dynamic query-based
debugger discussed in Section 4 remain the same. The only new component of the debugger
is a module that maintains the current query result. As discussed in Section 4.4.1, the
debugger reevaluates only the changed part of the query. Consequently, the result handling
module must store the query result from the previous evaluation and then merge it with
the new partial result. To achieve that, after query execution the debugger deletes all tuples
from the previous result that contain the changed domain object and inserts the new tuples
generated by the incremental reevaluation.
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Table 10. Benchmark queries with non-empty results.

Application Query Slowdown

Ideal gas tank 1. Molecule1 z. z.x < 200 1.05

Decaf 2. Id x. x.type == 0 1.23

Jess 3. spec.benchmarks. 202 jess.jess.Token z. z.sortcode == 0 1.3

Compress 4. spec.benchmarks. 201 compress.Compressor z. z.OutCnt == 0 1.19

5. spec.benchmarks. 201 compress.Compressor z. z.out count == 0 1.09

Ideal gas tank 6. Molecule1 z; Molecule2 z1. z.x < z1.x && z.y < z1.y (33 × 33 join) 1.47

Decaf 7. Lexer1; Token t. 1.token == t && t.type == 0 (120,000 × 600 hash join) 4.09

Ray tracer 8. spec.benchmarks. 205 raytrace.Point p; spec.benchmarks. 205 raytrace. 212.4
IntersectPt ip.
(p.z == ip.t) && (p.z > 100) (85,000 × 8,000 hash join)

Compress 9. spec.benchmarks. 201 compress.Compressor z; 9.07
spec.benchmarks. 201 compress.Output Buffer z1. z1.OutCnt == z.
out count (1 × 1 hash join)

10. spec.benchmarks. 201 compress.Input Buffer z;
spec.benchmarks. 201 compress.Output Buffer z1. z1.OutCnt < z1.InCnt 127
(1 × 1 join)

Microbenchmark 11. Test5 z. z.x%2 == 0 45

Experiments with queries similar to the ones in Table 1 show that adding the query
result update functionality does not significantly change the query evaluation overhead
(Table 10). The only exception is the microbenchmark selection query 11 which updates
the query result during each reevaluation. Consequently, the overhead of the selection
increases from 6.4 times to 45 times, although part of this increase can be attributed to the
more costly selection constraint. However, such frequent result updates are unlikely for most
monitoring queries: programmers can only absorb infrequent result changes, so, if results
change rapidly, the display will be unintelligible unless it is artificially slowed down or used
off-line.

To summarize, monitoring queries are useful for understanding and visualizing program
behavior. With slight modifications our debugger supports monitoring queries. Unless the
result changes very rapidly, the additional overhead of monitoring query execution is in-
significant when compared to similar debugging queries.

8. Related work

We are unware of other work the directly corresponds to dynamic query-based debugging
and its on-the-fly extension. The query-based debugging model and its non-dynamic im-
plementation are presented in a previous paper (Lencevicius et al., 1997). Query-based
debugging is discussed in detail in R. Lencevicius’ book “Advanced debugging methods”
(Lencevicius, 2000a). This book also lists and discusses over 90 different queries and clas-
sifies them according to different parameters.
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Extensions of object-oriented languages with rules as in R++ (Litman et al., 1997)
provide a framework that allows users to execute code when a given condition is true.
However, R++ rules can only reference objects reachable from the root object, so R++
would not help to find the javac error we discussed. Due to restrictions on objects in the
rule, R++ also does not handle join queries.

Sefika et al. (1996) implemented a system allowing limited, unoptimized selection queries
about high-level objects in the Choices operating system. The system dynamically shows
program state and run-time statistics at various levels of abstraction. Unlike our dynamic
query-based debugger, the tool uses instrumentation specific to the application (Choices).
Sefika’s system allows on-the-fly queries because the underlying system is instrumented
for information gathering.

On-the-fly debugging idea is based on the design of the commercial debuggers (e.g.,
gdb) that allow programmers to stop the program and to add breakpoints before fur-
ther execution (Kessler, 1990) and to check the values of different variables at a break-
point. Such capabilities are also available in data breakpoint debuggers (Wahbe et al.,
1993). Dynamic query-based debugging extends work on data breakpoints (Wahbe et al.,
1993)—breakpoints that stop a program whenever an object field is assigned a certain value.
Debuggers that instrument source code programs have also been proposed (Ferguson and
Berner, 1963). However, the problem of allowing a portable implementation of on-the-fly
debugging through automatic instrumentation of Java class files is new and not addressed
in classical debuggers.

While no one has investigated the query-based debugging specifically, various researchers
have proposed a variety of enhancements to conventional debugging (Anderson, 1995;
Coplien, 1994; De Pauw et al., 1993; Golan and Hanson, 1993; Gamma et al., 1989;
Kimelman et al., 1994; Laffra, 1997; Laffra and Malhotra, 1994; Lange and Nakamura,
1997; Weinand and Gamma, 1994). The debuggers most closely related to dynamic query-
based debugging visualize object relationships—usually references or an object call graph.
Duel (Golan and Hanson, 1993) builds on gdb facilities to display data structures by using
user script code at a breakpoint. HotWire (Laffra and Malhotra, 1994) allows users to spec-
ify custorn object visualizations in constraint language. Look! (Anderson, 1995) supports
adding breakpoints, filters and watch windows at runtime for C++ debugging. Object vi-
sualizer (De Pauw et al., 1993). PV (Kimelman et al., 1994), and Program Explorer (Lange
and Nakamura, 1997) provide numerous graphical and statistical runtime views with class-
dependent filtering but do not allow general queries. Our debugger can gather statistical
data through queries with nonempty results (“How many lists of size greater than 500 exist
in the program?”) but does not display animated statistical views.

Debuggers that gather information by either instrumenting the source code (De Pauw
et al., 1993; Laffra and Malhotra, 1994) or by using program traces (Kimelman et al.,
1994; Lange and Nakamura, 1997) usually require program recompilation for each different
view and do not allow on-the-fly modifications. Gamma et al. (1989) allow different on-
the-fly views of debugged programs based on ET++ framework. Laffra (1997) discusses
visual debugging in Java using source code instrumentation or JVM changes. As mentioned
above, JVM modifications would support on-the-fly debugging, but would make the tool
dependent on the modified JVM. We opted for a portable method—class file instrumentation
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at load time. The instrumentation is done by providing a custome class loader. Other load-
time instrumentation alternatives were comprehensively explored by Duncan and Hölzle
(1999).

Consens et al. (1992, 1994) use the Hy+ visualization system to find errors using post-
mortem event traces. Ducassé (1999) proposes Coca debugger that allows to users to ask
Prolog queries on events reported by a program. Coca selects program’s control flow events
according to observed data characteristics. De Pauw et al. (1998) and Walker et al. (1998)
use program event traces to visualize program execution patterns and event-based object re-
lationships, such as method invocations and object creation. Similarly, Bruegge and Hibbard
(1983) use generalized path expressions that refer to program events and variables to check
program execution path correctness. The path expressions are powerful tool allowing to
identify program statements and variables in different procedure invocations. Path rules can
be enabled on-the-fly. However, path expressions do not allow optimized join query evalua-
tions or selections on large groups of objects. The work on trace analysis is complementary
to ours because it focuses on querying and visualizing runtime events while we query object
relationships.

Software visualization systems such as BALSA (Brown, 1988), Zeus (Brown, 1991),
TANGO/XTANGO/POLKA (Stasko, 1990) Pavane (Roman et al., 1992), and others (HaoAu: Pls.

verify the
year of
publication
in the ref.
citation
and list.

et al., 1995; Roman and Cox, 1993) offer high-level views of algorithms and associated
data structures. Software visualization systems aim to explain or illustrate the algorithm, so
their view creation process emphasizes vivid representation. Hart et al. (1997) use Pavane
for query-based visualization of distributed programs. However, their system only displays
selected attributes of different processes and does not allow more complicated queries.

Pre-/postconditions and class invariants as provided in Eiffel (Meyer, 1988) can be thought
of as language-supported dynamic queries that are checked at the beginning or end of
methods. Unlike dynamic queries, they are not continuously checked, they cannot access
objects unreachable by references from the checked class, nor can they invoke arbitary
methods. Assertions and invariants cannot be invoked on-the-fly. Dynamic queries could be
used to implement class assertions for languages that do not provide them and to support
assertions active only during part of the execution. The current implementation of dynamic
queries cannot use the “old” value of a variable, as can be done in postconditions. We
view the two mechanisms as complementary, with queries being more suitable for program
exploration as well as specific debugging problems.

Defining the model of the debugger independent of the underlying language is a topic of
future research. This could be achieved through approaches such as small step semantics
(Winskel, 1993).

Dynamic queries are related to incremental join result recalculation in databases
(Buneman and Clemons, 1979; Blakeley et al., 1986). We use the basic insights of this
work to implement the incremental query evaluation scheme. Database queries and views
automatically support “on-the-fly” functionality. There is currently no lightweight Java-
based database library that could be used in QBD to provide query evaluation optimiza-
tions. Using a stand-alone database for QBD query processing would be nearly impossible
because the overhead of data shipping between Java and the database would negate any po-
tential benefits. Future optimizations to the dynamic query-based debugger could include
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static program analysis allowing to decrease the necessary instrumentation points and the
instrumentation overhead.

9. Conclusions

The cause-effect gap between the instant when a program error occurs and when it becomes
apparent to the programmer makes many program errors hard to find. The situation is further
complicated by the increasing use of large class libraries and complicated pointer-linked
data structures in modern object-oriented systems. A misdirected reference that violates
an abstract relationship between objects may remain undiscovered until much later in the
program’s execution. Conventional debugging methods offer only limited help in finding
such errors.

Our work describes a dynamic query-based debugger that allows programmers to ask
queries about the program state and updates query results whenever the program changes
an object relevant to the query, helping programmers to discover object relationship failures
as soon as they happen. The debugger also helps users to watch the changes in object
configurations through the program’s lifetime. This functionality can be used to better
understand program behavior.

The implementation of the dynamic query-based debugger has good performance. Selec-
tion queries are efficient with less than a factor of two slowdown for most queries measured.
We also measured field assignment frequencies in the SPECjvm98 suite, and showed that
95% of all fields in these applications are assigned less than 100,000 times per second.
Using these numbers and individual evaluation time estimates, our debugger performance
model predicts that selection queries will have less than 43% overhead for 95% of all fields
in the SPECjvm98 applications. Join queries are practical when domain sizes are small and
queried field changes are infrequent.

Good performance is achieved through a combination of two optimizations:

• Incremental query evaluation decreases query evaluation overhead, greatly expanding the
class of dynamic queries that are practical for everyday debugging.

• Custom code generation speeds up selection queries, further improving efficiency for
commonly occurring selection queries.

This paper also presents the on-the-fly query-based debugger that achieves the following
goals:

• Interactivity—allows programmers to ask queries in the middle of the program execution
to exclude runtime periods when the query is not satisfied or to increase the query’s
efficiency by enabling it only in a small part of the execution.

• Portability—provides on-the-fly functionality in a portable way for different operating
systems and Java virtual machines at a reasonable cost.

These features of the on-the-fly debugger makes it attractive for object-oriented debugging
needs.
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On-the-fly debugging still has a relatively high overhead. Programs in our experiments
with inactive debugger suffer an overhead of up to 70%. An enabled debugger that never eval-
uates a query—for example, because the query references only non-instantiated classes—
has an overhead of up to factor 3. Selection slowdowns for tested queries range up to factor
9.5. The on-the-fly debugger has four times higher overhead than the dynamic query-based
debugger. Further optimizations could reduce this overhead. The tool is practical for short
program runs and infrequently evaluated queries.

We believe that query-based debugging adds another powerful tool to the programmer’s
tool chest for tackling the complex task of debugging. We hope that future mainstream
debuggers will integrate a similar functionality, simplifying the difficult task of debugging
and facilitating the development of more robust object-oriented systems.
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Notes

1. We implemented it for JDK 1.1.5 during the initial design of a query-based debugger. Such collection may
contain dead objects, but so can current domain collections.

2. Experiments were run with 128 M heap, a factor that decreased the GC overhead.
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